Task: GEN

Bits Generator

Bolivian ICPC Camp, contest \#2. Source file gen.* Available memory: 128 MB.
Byteasar likes to play with his random (well, actually pseudorandom) bits generator, which he has found on his computer. This generator works in a very simple way. The moment the computer is turned on, an integer in the range between 0 and $m-1$ is chosen automagically. This integer is called the seed of the generator; we will use variable z to represent it. Then, in order to generate a random bit, the following function is called. It computes a new value of the seed which is then used to generate a single bit:

```
z:=\lfloor(z\cdota+c)/k\rfloor\operatorname{mod}m
if z<\lfloorm/2\rfloor then
    return 0
else
    return 1
```

The numbers a, c, k are some constants. Byteasar has called this function n times and has thus obtained a sequence of bits $b_{1}, b_{2}, \ldots, b_{n}$. Now he is wondering what is the number of different possible values of the initial seed.

Input

The first line of the input contains five integers a, c, k, m and $n(0 \leq a, c<m, 1 \leq k<m, 2 \leq m \leq 1000000$, $1 \leq n \leq 100000$). The second line contains an n-character string consisting of digits 0 and 1 ; the i-th digit of the string represents the bit b_{i}.

Output

You should output one integer representing the number of integers from the range between 0 and $m-1$ which could have been the initial seed of the generator.

Example

For the input data:
36292
10
the correct result is:
4
Explanation of the example: The initial seed of the generator could have been equal to $1,2,7$ or 8 .

