// clang-format off #include <bits/stdc++.h> // #include <ext/pb_ds/assoc_container.hpp> // #include <ext/pb_ds/tree_policy.hpp> using namespace std; template<class Fun> class y_combinator_result { Fun fun_; public: template<class T> explicit y_combinator_result(T &&fun): fun_(forward<T>(fun)) {} template<class ...Args> decltype(auto) operator()(Args &&...args) { return fun_(ref(*this), forward<Args>(args)...); } }; template<class Fun> decltype(auto) y_combinator(Fun &&fun) { return y_combinator_result<decay_t<Fun>>(forward<Fun>(fun)); } // using namespace __gnu_pbds; // template <typename T> using ordered_set = tree<T, null_type, less<T>, rb_tree_tag, tree_order_statistics_node_update>; #define sim template < class c #define ris return * this #define dor > debug & operator << #define eni(x) sim > typename enable_if<sizeof dud<c>(0) x 1, debug&>::type operator<<(c i) { sim > struct rge { c b, e; }; sim > rge<c> range(c i, c j) { return rge<c>{i, j}; } sim > auto dud(c* x) -> decltype(cerr << *x, 0); sim > char dud(...); struct debug { #ifdef XOX ~debug() { cerr << endl; } eni(!=) cerr << boolalpha << i; ris; } eni(==) ris << range(begin(i), end(i)); } sim, class b dor(pair < b, c > d) { ris << "(" << d.first << ", " << d.second << ")"; } sim dor(rge<c> d) { *this << "["; for (auto it = d.b; it != d.e; ++it) *this << ", " + 2 * (it == d.b) << *it; ris << "]"; } #else sim dor(const c&) { ris; } #endif }; #define imie(...) " [" << #__VA_ARGS__ ": " << (__VA_ARGS__) << "] " struct { template <class T> operator T() { T x; cin >> x; return x; } } in; #define endl '\n' #define pb emplace_back #define all(x) begin(x), end(x) #define sz(x) (int)(x).size() using i64 = long long; template <class T> using vt = vector<T>; template <class T, size_t n> using ar = array<T, n>; namespace R = ranges; auto ra(auto x, auto y) { return R::iota_view(x, y); } // #define int long long // clang-format on void solve() { int n = in, ma = in; set<ar<int, 2>> edges; vt<pair<char, ar<int, 2>>> print; auto has_edge = [&](int u, int v) { return edges.count({u, v}); }; auto add_edge = [&](int u, int v) { if (has_edge(u, v)) return; edges.insert({u, v}); edges.insert({v, u}); print.pb('+', ar<int, 2>{u, v}); }; auto del_edge = [&](int u, int v) { if (!has_edge(u, v)) return; edges.erase({u, v}); edges.erase({v, u}); print.pb('-', ar<int, 2>{u, v}); }; vt<vt<int>> ga(n); for (int i : ra(0, ma)) { int u = in, v = in; --u, --v; ga[u].pb(v), ga[v].pb(u); add_edge(u, v); print.pop_back(); } for (int i : ra(0, n)) { sort(all(ga[i])); } int mb = in; vt<vt<int>> gb(n); for (int i : ra(0, mb)) { int u = in, v = in; --u, --v; gb[u].pb(v), gb[v].pb(u); } for (int i : ra(0, n)) { sort(all(gb[i])); } vt<bool> vis(n); y_combinator([&](auto f, int u) -> void { vis[u] = 1; if (u != 0 && !has_edge(0, u)) add_edge(0, u); for (int v : ga[u]) { if (!vis[v]) { f(v); } } })(0); for (int i : ra(1, n)) { int j = (ga[i][0] == 0); debug() << imie(i) << imie(ga[i]) << imie(gb[i]); for (int k : gb[i]) { if (k == 0) continue; while (j < sz(ga[i]) && ga[i][j] < k) { del_edge(ga[i][j], i); ++j; } if (j == sz(ga[i]) || ga[i][j] != k) add_edge(i, k); else { ++j; } } while (j < sz(ga[i])) { del_edge(ga[i][j], i); ++j; } } fill(all(vis), 0); vis[0] = 1; for (int to : gb[0]) { y_combinator([&](auto f, int u) -> void { vis[u] = 1; for (int v : gb[u]) { if (!vis[v]) f(v); } if (gb[u][0] != 0) del_edge(0, u); })(to); } cout << sz(print) << endl; for (auto [c, e] : print) { cout << c << " " << e[0] + 1 << " " << e[1] + 1 << endl; } } int32_t main() { cin.tie(0)->sync_with_stdio(0); int t = 1; // int t = in; while (t--) { solve(); } }
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 | // clang-format off #include <bits/stdc++.h> // #include <ext/pb_ds/assoc_container.hpp> // #include <ext/pb_ds/tree_policy.hpp> using namespace std; template<class Fun> class y_combinator_result { Fun fun_; public: template<class T> explicit y_combinator_result(T &&fun): fun_(forward<T>(fun)) {} template<class ...Args> decltype(auto) operator()(Args &&...args) { return fun_(ref(*this), forward<Args>(args)...); } }; template<class Fun> decltype(auto) y_combinator(Fun &&fun) { return y_combinator_result<decay_t<Fun>>(forward<Fun>(fun)); } // using namespace __gnu_pbds; // template <typename T> using ordered_set = tree<T, null_type, less<T>, rb_tree_tag, tree_order_statistics_node_update>; #define sim template < class c #define ris return * this #define dor > debug & operator << #define eni(x) sim > typename enable_if<sizeof dud<c>(0) x 1, debug&>::type operator<<(c i) { sim > struct rge { c b, e; }; sim > rge<c> range(c i, c j) { return rge<c>{i, j}; } sim > auto dud(c* x) -> decltype(cerr << *x, 0); sim > char dud(...); struct debug { #ifdef XOX ~debug() { cerr << endl; } eni(!=) cerr << boolalpha << i; ris; } eni(==) ris << range(begin(i), end(i)); } sim, class b dor(pair < b, c > d) { ris << "(" << d.first << ", " << d.second << ")"; } sim dor(rge<c> d) { *this << "["; for (auto it = d.b; it != d.e; ++it) *this << ", " + 2 * (it == d.b) << *it; ris << "]"; } #else sim dor(const c&) { ris; } #endif }; #define imie(...) " [" << #__VA_ARGS__ ": " << (__VA_ARGS__) << "] " struct { template <class T> operator T() { T x; cin >> x; return x; } } in; #define endl '\n' #define pb emplace_back #define all(x) begin(x), end(x) #define sz(x) (int)(x).size() using i64 = long long; template <class T> using vt = vector<T>; template <class T, size_t n> using ar = array<T, n>; namespace R = ranges; auto ra(auto x, auto y) { return R::iota_view(x, y); } // #define int long long // clang-format on void solve() { int n = in, ma = in; set<ar<int, 2>> edges; vt<pair<char, ar<int, 2>>> print; auto has_edge = [&](int u, int v) { return edges.count({u, v}); }; auto add_edge = [&](int u, int v) { if (has_edge(u, v)) return; edges.insert({u, v}); edges.insert({v, u}); print.pb('+', ar<int, 2>{u, v}); }; auto del_edge = [&](int u, int v) { if (!has_edge(u, v)) return; edges.erase({u, v}); edges.erase({v, u}); print.pb('-', ar<int, 2>{u, v}); }; vt<vt<int>> ga(n); for (int i : ra(0, ma)) { int u = in, v = in; --u, --v; ga[u].pb(v), ga[v].pb(u); add_edge(u, v); print.pop_back(); } for (int i : ra(0, n)) { sort(all(ga[i])); } int mb = in; vt<vt<int>> gb(n); for (int i : ra(0, mb)) { int u = in, v = in; --u, --v; gb[u].pb(v), gb[v].pb(u); } for (int i : ra(0, n)) { sort(all(gb[i])); } vt<bool> vis(n); y_combinator([&](auto f, int u) -> void { vis[u] = 1; if (u != 0 && !has_edge(0, u)) add_edge(0, u); for (int v : ga[u]) { if (!vis[v]) { f(v); } } })(0); for (int i : ra(1, n)) { int j = (ga[i][0] == 0); debug() << imie(i) << imie(ga[i]) << imie(gb[i]); for (int k : gb[i]) { if (k == 0) continue; while (j < sz(ga[i]) && ga[i][j] < k) { del_edge(ga[i][j], i); ++j; } if (j == sz(ga[i]) || ga[i][j] != k) add_edge(i, k); else { ++j; } } while (j < sz(ga[i])) { del_edge(ga[i][j], i); ++j; } } fill(all(vis), 0); vis[0] = 1; for (int to : gb[0]) { y_combinator([&](auto f, int u) -> void { vis[u] = 1; for (int v : gb[u]) { if (!vis[v]) f(v); } if (gb[u][0] != 0) del_edge(0, u); })(to); } cout << sz(print) << endl; for (auto [c, e] : print) { cout << c << " " << e[0] + 1 << " " << e[1] + 1 << endl; } } int32_t main() { cin.tie(0)->sync_with_stdio(0); int t = 1; // int t = in; while (t--) { solve(); } } |