#include <cstdio> #include <iostream> #include <algorithm> #include <string> #include <vector> #include <deque> using namespace std; typedef vector<int> VI; typedef long long LL; typedef vector<VI> VVI; typedef vector<LL> VLL; typedef vector<double> VD; typedef vector<string> VS; typedef pair<int, int> PII; typedef vector<PII> VPII; #define FOR(x, b, e) for (int x = b; x <= (e); ++x) #define FORD(x, b, e) for (int x = b; x >= (e); --x) #define REP(x, n) for (int x = 0; x < (n); ++x) #define VAR(v, n) __typeof(n) v = (n) #define ALL(c) (c).begin(), (c).end() #define SIZE(x) ((int)(x).size()) #define FOREACH(i, c) for (VAR(i, (c).begin()); i != (c).end(); ++i) #define PB push_back #define PF push_front #define MP make_pair #define ST first #define ND second // Stała INF jest wykorzystywana jako reprezentacja nieskończoności. Ma ona // wartość 1000000001, a nie 2147483647 (największa wartość typu int) ze // względu na dwa fakty - prosty zapis, oraz brak przepełnienia wartości zmiennej // w przypadku dodawania dwóch nieskończoności do siebie // ((int) 2147483647 + (int) 2147483647 = -2). const int INF = 1000000001; // Stała EPS jest używana w wielu algorytmach geometrycznych do porównywania // wartości bliskich zera (w zadaniach tego typu pojawia się wiele problemów // związanych z błędami zaokrągleń) const double EPS = 10e-9; template <typename Container> void pprint(const Container &c) { std::cout << "["; for (auto it = c.begin(); it != c.end(); /* no increment here */) { std::cout << *it; if (++it != c.end()) std::cout << ", "; // Increment here } std::cout << "]" << "\n"; } template <typename K, typename V> void pprint(const pair<K, V> &c) { cout << "[" << c.ST << ", " << c.ND << "]"; } enum EVENT { Q, ADD, REMOVE }; struct Event { EVENT event_type; int first; int secon; Event(char _e, int _f, int _s) : event_type(_e == '?' ? Q : _e == '+' ? ADD : REMOVE), first(_f - 1), secon(_s - 1) {} }; struct UF { VI parents; VI ranks; UF(int n) : parents(n), ranks(n, 0) { REP(i, n) { parents[i] = i; } } int find(int i) { if (i != parents[i]) { parents[i] = find(parents[i]); } return parents[i]; } // returns new_root int unite(int i, int j) { int i_root = find(i); int j_root = find(j); if (ranks[i_root] < ranks[j_root]) { parents[i_root] = j_root; return j_root; } else if (ranks[i_root] > ranks[j_root]) { parents[j_root] = i_root; return i_root; } else { parents[j_root] = i_root; ranks[i_root]++; return i_root; } } // return new root for elements that referenced old root int disjoin(int x, int ov) { ranks[x] = 0; int new_root = x == ov ? -1 : ov; REP(i, SIZE(parents)) { if (parents[i] == x) { if (new_root == -1 && i != x) { new_root = i; } if (i != x) { parents[i] = new_root; } } } parents[x] = x; return new_root; } }; int main() { int population; int events_count; cin >> population; cin >> events_count; UF groups = UF(population); VI compus_in_groups = VI(population); VI people_in_groups = VI(population); REP(i, population) { people_in_groups[i] = 1; } Event e = Event('?', 4, 3); char t; int f, s; REP(i, events_count) { cin >> t; cin >> f; if (t == '+') { cin >> s; } else { s = 0; } e = Event(t, f, s); if (e.event_type == Q) { int group = groups.find(e.first); if (compus_in_groups[group] == 0) { cout << '0'; } else if (compus_in_groups[group] == people_in_groups[group]) { cout << '1'; } else { cout << '?'; } } else if (e.event_type == ADD) { int group_of_first = groups.find(e.first); int group_of_secon = groups.find(e.secon); if (group_of_first == group_of_secon) { compus_in_groups[group_of_first]++; } else if (compus_in_groups[group_of_first] == people_in_groups[group_of_first]) { // obvious that second group received a comp compus_in_groups[group_of_secon]++; } else if (compus_in_groups[group_of_secon] == people_in_groups[group_of_secon]) { // obvious that first group received a comp compus_in_groups[group_of_first]++; } else { // merge two groups int new_root = groups.unite(group_of_first, group_of_secon); int old_root = group_of_first == new_root ? group_of_secon : group_of_first; compus_in_groups[new_root] += compus_in_groups[old_root] + 1; people_in_groups[new_root] += people_in_groups[old_root]; } } else if (e.event_type == REMOVE) { int group = groups.find(e.first); // disjoint from group! int new_group = groups.disjoin(e.first, group); if (group != new_group && new_group != -1) { people_in_groups[new_group] = people_in_groups[group]-1; compus_in_groups[new_group] = compus_in_groups[group]-1; } else { people_in_groups[group]--; compus_in_groups[group]--; } people_in_groups[e.first] = 1; compus_in_groups[e.first] = 0; } } }
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 | #include <cstdio> #include <iostream> #include <algorithm> #include <string> #include <vector> #include <deque> using namespace std; typedef vector<int> VI; typedef long long LL; typedef vector<VI> VVI; typedef vector<LL> VLL; typedef vector<double> VD; typedef vector<string> VS; typedef pair<int, int> PII; typedef vector<PII> VPII; #define FOR(x, b, e) for (int x = b; x <= (e); ++x) #define FORD(x, b, e) for (int x = b; x >= (e); --x) #define REP(x, n) for (int x = 0; x < (n); ++x) #define VAR(v, n) __typeof(n) v = (n) #define ALL(c) (c).begin(), (c).end() #define SIZE(x) ((int)(x).size()) #define FOREACH(i, c) for (VAR(i, (c).begin()); i != (c).end(); ++i) #define PB push_back #define PF push_front #define MP make_pair #define ST first #define ND second // Stała INF jest wykorzystywana jako reprezentacja nieskończoności. Ma ona // wartość 1000000001, a nie 2147483647 (największa wartość typu int) ze // względu na dwa fakty - prosty zapis, oraz brak przepełnienia wartości zmiennej // w przypadku dodawania dwóch nieskończoności do siebie // ((int) 2147483647 + (int) 2147483647 = -2). const int INF = 1000000001; // Stała EPS jest używana w wielu algorytmach geometrycznych do porównywania // wartości bliskich zera (w zadaniach tego typu pojawia się wiele problemów // związanych z błędami zaokrągleń) const double EPS = 10e-9; template <typename Container> void pprint(const Container &c) { std::cout << "["; for (auto it = c.begin(); it != c.end(); /* no increment here */) { std::cout << *it; if (++it != c.end()) std::cout << ", "; // Increment here } std::cout << "]" << "\n"; } template <typename K, typename V> void pprint(const pair<K, V> &c) { cout << "[" << c.ST << ", " << c.ND << "]"; } enum EVENT { Q, ADD, REMOVE }; struct Event { EVENT event_type; int first; int secon; Event(char _e, int _f, int _s) : event_type(_e == '?' ? Q : _e == '+' ? ADD : REMOVE), first(_f - 1), secon(_s - 1) {} }; struct UF { VI parents; VI ranks; UF(int n) : parents(n), ranks(n, 0) { REP(i, n) { parents[i] = i; } } int find(int i) { if (i != parents[i]) { parents[i] = find(parents[i]); } return parents[i]; } // returns new_root int unite(int i, int j) { int i_root = find(i); int j_root = find(j); if (ranks[i_root] < ranks[j_root]) { parents[i_root] = j_root; return j_root; } else if (ranks[i_root] > ranks[j_root]) { parents[j_root] = i_root; return i_root; } else { parents[j_root] = i_root; ranks[i_root]++; return i_root; } } // return new root for elements that referenced old root int disjoin(int x, int ov) { ranks[x] = 0; int new_root = x == ov ? -1 : ov; REP(i, SIZE(parents)) { if (parents[i] == x) { if (new_root == -1 && i != x) { new_root = i; } if (i != x) { parents[i] = new_root; } } } parents[x] = x; return new_root; } }; int main() { int population; int events_count; cin >> population; cin >> events_count; UF groups = UF(population); VI compus_in_groups = VI(population); VI people_in_groups = VI(population); REP(i, population) { people_in_groups[i] = 1; } Event e = Event('?', 4, 3); char t; int f, s; REP(i, events_count) { cin >> t; cin >> f; if (t == '+') { cin >> s; } else { s = 0; } e = Event(t, f, s); if (e.event_type == Q) { int group = groups.find(e.first); if (compus_in_groups[group] == 0) { cout << '0'; } else if (compus_in_groups[group] == people_in_groups[group]) { cout << '1'; } else { cout << '?'; } } else if (e.event_type == ADD) { int group_of_first = groups.find(e.first); int group_of_secon = groups.find(e.secon); if (group_of_first == group_of_secon) { compus_in_groups[group_of_first]++; } else if (compus_in_groups[group_of_first] == people_in_groups[group_of_first]) { // obvious that second group received a comp compus_in_groups[group_of_secon]++; } else if (compus_in_groups[group_of_secon] == people_in_groups[group_of_secon]) { // obvious that first group received a comp compus_in_groups[group_of_first]++; } else { // merge two groups int new_root = groups.unite(group_of_first, group_of_secon); int old_root = group_of_first == new_root ? group_of_secon : group_of_first; compus_in_groups[new_root] += compus_in_groups[old_root] + 1; people_in_groups[new_root] += people_in_groups[old_root]; } } else if (e.event_type == REMOVE) { int group = groups.find(e.first); // disjoint from group! int new_group = groups.disjoin(e.first, group); if (group != new_group && new_group != -1) { people_in_groups[new_group] = people_in_groups[group]-1; compus_in_groups[new_group] = compus_in_groups[group]-1; } else { people_in_groups[group]--; compus_in_groups[group]--; } people_in_groups[e.first] = 1; compus_in_groups[e.first] = 0; } } } |