#include <bits/stdc++.h> using std::cin, std::cout, std::vector; // Max number of inverse computations: // n^2 / num_precomputed_inverse + num_precomputed_inverse // Minimized for n. Maximum n is 3000. constexpr unsigned num_precomputed_inverse = 3000; // Stop after this many iterations with no progress. // False positive probability each time <= 2^-stop_after_iterations. constexpr unsigned stop_after_iterations = 30; const std::array<uint32_t, 8> SECRET_KEY = { 0xe437b3b4,0x995b1423,0x59bfa3dd,0xfab1afc3,0x3c8cdc0,0x98f7554,0x6f77d815,0x921d2ac7, }; // === void init_io() { cin.tie(nullptr); std::ios::sync_with_stdio(false); } namespace chacha_private { inline std::uint32_t rotate_left(const std::uint32_t x, int bits) { return (x << bits) | (x >> (32 - bits)); } inline void quarter_round(std::uint32_t &a, std::uint32_t &b, std::uint32_t &c, std::uint32_t &d) { a += b; d ^= a; d = rotate_left(d, 16); c += d; b ^= c; b = rotate_left(b, 12); a += b; d ^= a; d = rotate_left(d, 8); c += d; b ^= c; b = rotate_left(b, 7); } } template<int rounds> std::array<std::uint32_t, 16> chacha(const std::array<std::uint32_t, 8> &key, const std::uint64_t nonce, const std::uint64_t counter) { static_assert(rounds == 8 || rounds == 12 || rounds == 20); using namespace chacha_private; std::array<std::uint32_t, 16> input; std::memcpy(input.data() + 0, "expand 32-byte k", 4 * sizeof(std::uint32_t)); std::memcpy(input.data() + 4, key.data(), 8 * sizeof(std::uint32_t)); std::memcpy(input.data() + 12, &counter, 2 * sizeof(std::uint32_t)); std::memcpy(input.data() + 14, &nonce, 2 * sizeof(std::uint32_t)); std::array<std::uint32_t, 16> x = input; for (int double_round = 0; double_round < rounds / 2; ++double_round) { quarter_round(x[0], x[4], x[8], x[12]); quarter_round(x[1], x[5], x[9], x[13]); quarter_round(x[2], x[6], x[10], x[14]); quarter_round(x[3], x[7], x[11], x[15]); quarter_round(x[0], x[5], x[10], x[15]); quarter_round(x[1], x[6], x[11], x[12]); quarter_round(x[2], x[7], x[8], x[13]); quarter_round(x[3], x[4], x[9], x[14]); } for (int i = 0; i < 16; ++i) { x[i] += input[i]; } return x; } class RandomGenerator { public: RandomGenerator(const std::array<uint32_t, 8> &key, const std::uint64_t nonce) : m_chacha_key(key), m_chacha_nonce(nonce) {} RandomGenerator(const RandomGenerator &) = delete; void operator=(const RandomGenerator &) = delete; uint64_t random_bits(int n); private: void refill_number_buffer(); void refill_bits_buffer(); void refill_word_buffer(); std::array<uint32_t, 8> m_chacha_key; uint64_t m_chacha_nonce; uint64_t m_chacha_counter = 0; std::array<uint32_t, 16> m_word_buffer; int m_word_buffer_next = 16; uint32_t m_bits_buffer = 0; int m_bits_left = 0; }; inline uint64_t RandomGenerator::random_bits(int n) { std::uint64_t result = 0; while (n > 0) { if (n < m_bits_left) { result <<= n; result |= m_bits_buffer & ((1u << n) - 1u); m_bits_buffer >>= n; m_bits_left -= n; break; } else { result <<= m_bits_left; result |= m_bits_buffer; n -= m_bits_left; m_bits_buffer = 0; m_bits_left = 0; refill_bits_buffer(); } } return result; } inline void RandomGenerator::refill_bits_buffer() { if (m_word_buffer_next == 16) { refill_word_buffer(); } m_bits_buffer = m_word_buffer[m_word_buffer_next++]; m_bits_left = 32; } inline void RandomGenerator::refill_word_buffer() { m_word_buffer = chacha<8>(m_chacha_key, m_chacha_nonce, m_chacha_counter++); m_word_buffer_next = 0; } template<class T> T power(T a, unsigned b) { T res = T(1); while(b) { if(b&1u) res *= a; b >>= 1; a = a*a; } return res; } template<unsigned MOD> class Modulo { public: Modulo(unsigned x=0):v(x) {} unsigned get() const { return v; } Modulo operator+(Modulo b) const { unsigned res = v+b.v; if (res >= MOD) res -= MOD; return res; } void operator+=(Modulo b) { *this = *this + b; } Modulo operator-(Modulo b) const { return *this + Modulo(MOD-b.v); } void operator-=(Modulo b) { *this = *this - b; } Modulo operator*(Modulo b) const { return Modulo(std::uint64_t(v) * b.v % MOD); } void operator*=(Modulo b) { *this = *this * b; } Modulo inverse() const { return power(*this, MOD-2); } private: unsigned v; }; // === using Mod = Modulo<1'000'000'007>; vector<Mod> precomputed_inverse; void precompute_inverses() { precomputed_inverse.resize(num_precomputed_inverse); for(unsigned x=1; x<num_precomputed_inverse; ++x) { precomputed_inverse[x] = Mod(x).inverse(); } } Mod fast_inverse(const Mod x) { if (x.get() < num_precomputed_inverse) { return precomputed_inverse[x.get()]; } else { return x.inverse(); } } struct PermutationGroup { unsigned n; vector<vector<unsigned>> generators; vector<unsigned> sample(RandomGenerator &rng) const { const unsigned n = this->n; vector<unsigned> perm(n); for (unsigned i=0; i<n; ++i) perm[i] = i; vector<unsigned> next = perm; for (const vector<unsigned> &g : generators) { if (rng.random_bits(1)) { for (unsigned i = 0; i<n; ++i) next[i] = perm[g[i]]; } perm.swap(next); } return perm; } }; PermutationGroup read_permutation_group() { PermutationGroup permutation_group; unsigned num_generators; cin >> permutation_group.n >> num_generators; permutation_group.generators.reserve(num_generators); for (unsigned gi = 0; gi < num_generators; ++gi) { vector<unsigned> perm; perm.reserve(permutation_group.n); for (unsigned i=0; i<permutation_group.n; ++i) { unsigned x; cin >> x; --x; perm.push_back(x); } permutation_group.generators.push_back(std::move(perm)); } return permutation_group; } PermutationGroup read_permutation_group_speedtest() { PermutationGroup permutation_group; permutation_group.n = 3000; unsigned num_generators = 3000; std::mt19937 rng(1234); permutation_group.generators.reserve(num_generators); for (unsigned gi = 0; gi < num_generators; ++gi) { vector<unsigned> perm(permutation_group.n); for (unsigned i = 0; i<permutation_group.n; ++i) { perm[i] = i; } std::shuffle(perm.begin(), perm.end(), rng); permutation_group.generators.push_back(std::move(perm)); } return permutation_group; } class AverageInversionsCalculator { public: explicit AverageInversionsCalculator(const unsigned n1) { n = n1; group_index.resize(n); groups.reserve(n * n); for (unsigned a = 0; a < n; ++a) { vector<unsigned> &row = group_index[a]; row.reserve(n); for (unsigned b = 0; b < n; ++b) { row.push_back(groups.size()); vector<std::pair<std::uint16_t, std::uint16_t>> g = {{a, b}}; groups.push_back(std::move(g)); } } } bool process_permutation(const vector<unsigned> &perm) { vector<std::uint8_t> done_row(n, 0); bool progress = false; for (unsigned i = 0; i < n; ++i) { unsigned a = i; while (!done_row[a]) { if (process_row(a, perm)) { progress = true; } done_row[a] = 1; a = perm[a]; } } return progress; } Mod average_inversions() const { Mod res(0); for (const auto &group : groups) { unsigned count_noninverted = 0; unsigned count_inverted = 0; unsigned count_equal = 0; for (const auto &p : group) { if (p.first < p.second) { ++count_noninverted; } else if (p.first > p.second) { ++count_inverted; } else { ++count_equal; } } const unsigned total = count_inverted + count_noninverted; if (count_equal == 0 && total != 0) { // Each non-inverted has probability count_inverted / total of getting inverted. res += Mod(count_noninverted) * Mod(count_inverted) * fast_inverse(Mod(total)); } } return res; } private: bool process_row(const unsigned y, const vector<unsigned> &perm) { const vector<unsigned> &row = group_index[y]; const vector<unsigned> &row2 = group_index[perm[y]]; const unsigned n = this->n; bool progress = false; for (unsigned i = 0; i < n; ++i) { const unsigned group1 = row[i]; const unsigned group2 = row2[perm[i]]; if (group1 != group2) { merge_groups(group1, group2); progress = true; } } return progress; } void merge_groups(unsigned ga, unsigned gb) { if (groups[ga].size() < groups[gb].size()) { std::swap(ga, gb); } // gb becomes ga for (const auto &p : groups[gb]) { group_index[p.first][p.second] = ga; } groups[ga].insert(groups[ga].end(), groups[gb].begin(), groups[gb].end()); groups[gb].clear(); groups[gb].shrink_to_fit(); } unsigned n; vector<vector<unsigned>> group_index; vector<vector<std::pair<std::uint16_t, std::uint16_t>>> groups; }; Mod average_inversions(const PermutationGroup &permutation_group) { unsigned n = permutation_group.n; AverageInversionsCalculator calculator(n); unsigned iterations = 0; unsigned last_progress = 0; RandomGenerator rng(SECRET_KEY, 0); while (iterations < last_progress + stop_after_iterations) { const vector<unsigned> perm = permutation_group.sample(rng); ++iterations; if (calculator.process_permutation(perm)) { last_progress = iterations; } } std::cerr << "iters: " << last_progress << "+" << (iterations - last_progress) << "\n"; return calculator.average_inversions(); } int main() { init_io(); precompute_inverses(); const PermutationGroup permutation_group = read_permutation_group(); const Mod result = average_inversions(permutation_group); cout << result.get() << "\n"; }
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 | #include <bits/stdc++.h> using std::cin, std::cout, std::vector; // Max number of inverse computations: // n^2 / num_precomputed_inverse + num_precomputed_inverse // Minimized for n. Maximum n is 3000. constexpr unsigned num_precomputed_inverse = 3000; // Stop after this many iterations with no progress. // False positive probability each time <= 2^-stop_after_iterations. constexpr unsigned stop_after_iterations = 30; const std::array<uint32_t, 8> SECRET_KEY = { 0xe437b3b4,0x995b1423,0x59bfa3dd,0xfab1afc3,0x3c8cdc0,0x98f7554,0x6f77d815,0x921d2ac7, }; // === void init_io() { cin.tie(nullptr); std::ios::sync_with_stdio(false); } namespace chacha_private { inline std::uint32_t rotate_left(const std::uint32_t x, int bits) { return (x << bits) | (x >> (32 - bits)); } inline void quarter_round(std::uint32_t &a, std::uint32_t &b, std::uint32_t &c, std::uint32_t &d) { a += b; d ^= a; d = rotate_left(d, 16); c += d; b ^= c; b = rotate_left(b, 12); a += b; d ^= a; d = rotate_left(d, 8); c += d; b ^= c; b = rotate_left(b, 7); } } template<int rounds> std::array<std::uint32_t, 16> chacha(const std::array<std::uint32_t, 8> &key, const std::uint64_t nonce, const std::uint64_t counter) { static_assert(rounds == 8 || rounds == 12 || rounds == 20); using namespace chacha_private; std::array<std::uint32_t, 16> input; std::memcpy(input.data() + 0, "expand 32-byte k", 4 * sizeof(std::uint32_t)); std::memcpy(input.data() + 4, key.data(), 8 * sizeof(std::uint32_t)); std::memcpy(input.data() + 12, &counter, 2 * sizeof(std::uint32_t)); std::memcpy(input.data() + 14, &nonce, 2 * sizeof(std::uint32_t)); std::array<std::uint32_t, 16> x = input; for (int double_round = 0; double_round < rounds / 2; ++double_round) { quarter_round(x[0], x[4], x[8], x[12]); quarter_round(x[1], x[5], x[9], x[13]); quarter_round(x[2], x[6], x[10], x[14]); quarter_round(x[3], x[7], x[11], x[15]); quarter_round(x[0], x[5], x[10], x[15]); quarter_round(x[1], x[6], x[11], x[12]); quarter_round(x[2], x[7], x[8], x[13]); quarter_round(x[3], x[4], x[9], x[14]); } for (int i = 0; i < 16; ++i) { x[i] += input[i]; } return x; } class RandomGenerator { public: RandomGenerator(const std::array<uint32_t, 8> &key, const std::uint64_t nonce) : m_chacha_key(key), m_chacha_nonce(nonce) {} RandomGenerator(const RandomGenerator &) = delete; void operator=(const RandomGenerator &) = delete; uint64_t random_bits(int n); private: void refill_number_buffer(); void refill_bits_buffer(); void refill_word_buffer(); std::array<uint32_t, 8> m_chacha_key; uint64_t m_chacha_nonce; uint64_t m_chacha_counter = 0; std::array<uint32_t, 16> m_word_buffer; int m_word_buffer_next = 16; uint32_t m_bits_buffer = 0; int m_bits_left = 0; }; inline uint64_t RandomGenerator::random_bits(int n) { std::uint64_t result = 0; while (n > 0) { if (n < m_bits_left) { result <<= n; result |= m_bits_buffer & ((1u << n) - 1u); m_bits_buffer >>= n; m_bits_left -= n; break; } else { result <<= m_bits_left; result |= m_bits_buffer; n -= m_bits_left; m_bits_buffer = 0; m_bits_left = 0; refill_bits_buffer(); } } return result; } inline void RandomGenerator::refill_bits_buffer() { if (m_word_buffer_next == 16) { refill_word_buffer(); } m_bits_buffer = m_word_buffer[m_word_buffer_next++]; m_bits_left = 32; } inline void RandomGenerator::refill_word_buffer() { m_word_buffer = chacha<8>(m_chacha_key, m_chacha_nonce, m_chacha_counter++); m_word_buffer_next = 0; } template<class T> T power(T a, unsigned b) { T res = T(1); while(b) { if(b&1u) res *= a; b >>= 1; a = a*a; } return res; } template<unsigned MOD> class Modulo { public: Modulo(unsigned x=0):v(x) {} unsigned get() const { return v; } Modulo operator+(Modulo b) const { unsigned res = v+b.v; if (res >= MOD) res -= MOD; return res; } void operator+=(Modulo b) { *this = *this + b; } Modulo operator-(Modulo b) const { return *this + Modulo(MOD-b.v); } void operator-=(Modulo b) { *this = *this - b; } Modulo operator*(Modulo b) const { return Modulo(std::uint64_t(v) * b.v % MOD); } void operator*=(Modulo b) { *this = *this * b; } Modulo inverse() const { return power(*this, MOD-2); } private: unsigned v; }; // === using Mod = Modulo<1'000'000'007>; vector<Mod> precomputed_inverse; void precompute_inverses() { precomputed_inverse.resize(num_precomputed_inverse); for(unsigned x=1; x<num_precomputed_inverse; ++x) { precomputed_inverse[x] = Mod(x).inverse(); } } Mod fast_inverse(const Mod x) { if (x.get() < num_precomputed_inverse) { return precomputed_inverse[x.get()]; } else { return x.inverse(); } } struct PermutationGroup { unsigned n; vector<vector<unsigned>> generators; vector<unsigned> sample(RandomGenerator &rng) const { const unsigned n = this->n; vector<unsigned> perm(n); for (unsigned i=0; i<n; ++i) perm[i] = i; vector<unsigned> next = perm; for (const vector<unsigned> &g : generators) { if (rng.random_bits(1)) { for (unsigned i = 0; i<n; ++i) next[i] = perm[g[i]]; } perm.swap(next); } return perm; } }; PermutationGroup read_permutation_group() { PermutationGroup permutation_group; unsigned num_generators; cin >> permutation_group.n >> num_generators; permutation_group.generators.reserve(num_generators); for (unsigned gi = 0; gi < num_generators; ++gi) { vector<unsigned> perm; perm.reserve(permutation_group.n); for (unsigned i=0; i<permutation_group.n; ++i) { unsigned x; cin >> x; --x; perm.push_back(x); } permutation_group.generators.push_back(std::move(perm)); } return permutation_group; } PermutationGroup read_permutation_group_speedtest() { PermutationGroup permutation_group; permutation_group.n = 3000; unsigned num_generators = 3000; std::mt19937 rng(1234); permutation_group.generators.reserve(num_generators); for (unsigned gi = 0; gi < num_generators; ++gi) { vector<unsigned> perm(permutation_group.n); for (unsigned i = 0; i<permutation_group.n; ++i) { perm[i] = i; } std::shuffle(perm.begin(), perm.end(), rng); permutation_group.generators.push_back(std::move(perm)); } return permutation_group; } class AverageInversionsCalculator { public: explicit AverageInversionsCalculator(const unsigned n1) { n = n1; group_index.resize(n); groups.reserve(n * n); for (unsigned a = 0; a < n; ++a) { vector<unsigned> &row = group_index[a]; row.reserve(n); for (unsigned b = 0; b < n; ++b) { row.push_back(groups.size()); vector<std::pair<std::uint16_t, std::uint16_t>> g = {{a, b}}; groups.push_back(std::move(g)); } } } bool process_permutation(const vector<unsigned> &perm) { vector<std::uint8_t> done_row(n, 0); bool progress = false; for (unsigned i = 0; i < n; ++i) { unsigned a = i; while (!done_row[a]) { if (process_row(a, perm)) { progress = true; } done_row[a] = 1; a = perm[a]; } } return progress; } Mod average_inversions() const { Mod res(0); for (const auto &group : groups) { unsigned count_noninverted = 0; unsigned count_inverted = 0; unsigned count_equal = 0; for (const auto &p : group) { if (p.first < p.second) { ++count_noninverted; } else if (p.first > p.second) { ++count_inverted; } else { ++count_equal; } } const unsigned total = count_inverted + count_noninverted; if (count_equal == 0 && total != 0) { // Each non-inverted has probability count_inverted / total of getting inverted. res += Mod(count_noninverted) * Mod(count_inverted) * fast_inverse(Mod(total)); } } return res; } private: bool process_row(const unsigned y, const vector<unsigned> &perm) { const vector<unsigned> &row = group_index[y]; const vector<unsigned> &row2 = group_index[perm[y]]; const unsigned n = this->n; bool progress = false; for (unsigned i = 0; i < n; ++i) { const unsigned group1 = row[i]; const unsigned group2 = row2[perm[i]]; if (group1 != group2) { merge_groups(group1, group2); progress = true; } } return progress; } void merge_groups(unsigned ga, unsigned gb) { if (groups[ga].size() < groups[gb].size()) { std::swap(ga, gb); } // gb becomes ga for (const auto &p : groups[gb]) { group_index[p.first][p.second] = ga; } groups[ga].insert(groups[ga].end(), groups[gb].begin(), groups[gb].end()); groups[gb].clear(); groups[gb].shrink_to_fit(); } unsigned n; vector<vector<unsigned>> group_index; vector<vector<std::pair<std::uint16_t, std::uint16_t>>> groups; }; Mod average_inversions(const PermutationGroup &permutation_group) { unsigned n = permutation_group.n; AverageInversionsCalculator calculator(n); unsigned iterations = 0; unsigned last_progress = 0; RandomGenerator rng(SECRET_KEY, 0); while (iterations < last_progress + stop_after_iterations) { const vector<unsigned> perm = permutation_group.sample(rng); ++iterations; if (calculator.process_permutation(perm)) { last_progress = iterations; } } std::cerr << "iters: " << last_progress << "+" << (iterations - last_progress) << "\n"; return calculator.average_inversions(); } int main() { init_io(); precompute_inverses(); const PermutationGroup permutation_group = read_permutation_group(); const Mod result = average_inversions(permutation_group); cout << result.get() << "\n"; } |