#pragma GCC optimize ("O3") #include <bits/stdc++.h> using namespace std; #define FOR(i, b, e) for(int i = (b); i < (e); i++) #define sz(x) int(x.size()) #define all(x) x.begin(), x.end() #define pb push_back #define mp make_pair #define st first #define nd second using ll = long long; using vi = vector<int>; using pii = pair<int, int>; auto &operator<<(auto &o, pair<auto, auto> p) { return o << "(" << p.st << ", " << p.nd << ")"; } auto operator<<(auto &o, auto x)->decltype(end(x), o) { o << "{"; int i=0; for(auto e: x) o << ", " + 2*!i++ << e; return o << "}"; } #ifdef LOCAL #define deb(x...) cerr << "[" #x "]: ", [](auto...$) { \ ((cerr << $ << "; "),...) << endl; }(x) #else #define deb(...) #endif const int mod = 1'000'000'007; int inv(int base) { int res = 1; for(int exp = mod - 2; exp; exp >>= 1) { if(exp & 1) res = 1ll * res * base % mod; base = 1ll * base * base % mod; } return res; } const int N = 3010; int perm[N]; int col[N][N], good[N * N]; vi kto[N * N]; void sc(int &num) { char c; num = 0; while(c = getchar_unlocked(), c < 33); for(; c > 47; c = getchar_unlocked()) num = num * 10 + c - '0'; } void solve() { int n, k; sc(n), sc(k); FOR(i, 0, n) FOR(j, 0, n) { int p = i * n + j; col[i][j] = p; good[p] = i > j; kto[p] = {p}; } FOR(kk, 0, k) { FOR(i, 0, n) { sc(perm[i]); perm[i]--; } FOR(i, 0, n) { int q = perm[i]; FOR(j, 0, n) { if(col[i][j] != col[q][perm[j]]) { int a = col[i][j], b = col[q][perm[j]]; if(sz(kto[a]) < sz(kto[b])) swap(a, b); good[a] += good[b]; for(int &x: kto[b]) { col[x / n][x % n] = a; kto[a].pb(x); } kto[b] = {}; } } } } int ans = 0; FOR(p, 0, n * n) if(p == col[p / n][p % n]) { ans = (ans + 1ll * good[p] * (sz(kto[p]) - good[p]) % mod * inv(sz(kto[p]))) % mod; } cout << ans << '\n'; } int main() { cin.tie(0)->sync_with_stdio(0); int tt = 1; // cin >> tt; FOR(te, 0, tt) solve(); return 0; }
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 | #pragma GCC optimize ("O3") #include <bits/stdc++.h> using namespace std; #define FOR(i, b, e) for(int i = (b); i < (e); i++) #define sz(x) int(x.size()) #define all(x) x.begin(), x.end() #define pb push_back #define mp make_pair #define st first #define nd second using ll = long long; using vi = vector<int>; using pii = pair<int, int>; auto &operator<<(auto &o, pair<auto, auto> p) { return o << "(" << p.st << ", " << p.nd << ")"; } auto operator<<(auto &o, auto x)->decltype(end(x), o) { o << "{"; int i=0; for(auto e: x) o << ", " + 2*!i++ << e; return o << "}"; } #ifdef LOCAL #define deb(x...) cerr << "[" #x "]: ", [](auto...$) { \ ((cerr << $ << "; "),...) << endl; }(x) #else #define deb(...) #endif const int mod = 1'000'000'007; int inv(int base) { int res = 1; for(int exp = mod - 2; exp; exp >>= 1) { if(exp & 1) res = 1ll * res * base % mod; base = 1ll * base * base % mod; } return res; } const int N = 3010; int perm[N]; int col[N][N], good[N * N]; vi kto[N * N]; void sc(int &num) { char c; num = 0; while(c = getchar_unlocked(), c < 33); for(; c > 47; c = getchar_unlocked()) num = num * 10 + c - '0'; } void solve() { int n, k; sc(n), sc(k); FOR(i, 0, n) FOR(j, 0, n) { int p = i * n + j; col[i][j] = p; good[p] = i > j; kto[p] = {p}; } FOR(kk, 0, k) { FOR(i, 0, n) { sc(perm[i]); perm[i]--; } FOR(i, 0, n) { int q = perm[i]; FOR(j, 0, n) { if(col[i][j] != col[q][perm[j]]) { int a = col[i][j], b = col[q][perm[j]]; if(sz(kto[a]) < sz(kto[b])) swap(a, b); good[a] += good[b]; for(int &x: kto[b]) { col[x / n][x % n] = a; kto[a].pb(x); } kto[b] = {}; } } } } int ans = 0; FOR(p, 0, n * n) if(p == col[p / n][p % n]) { ans = (ans + 1ll * good[p] * (sz(kto[p]) - good[p]) % mod * inv(sz(kto[p]))) % mod; } cout << ans << '\n'; } int main() { cin.tie(0)->sync_with_stdio(0); int tt = 1; // cin >> tt; FOR(te, 0, tt) solve(); return 0; } |