#include <iostream> #include <set> #include <vector> #define perm std::vector<int> constexpr int maxn = 3000, treeSize = 8192, mod = 1e9 + 7; int n, k; perm fav[maxn]; long long sum; std::set<perm> set; perm operator*(const perm& a, const perm& b) { perm res(n); for(int i = 1; i < n; i++) res[i] = a[b[i]]; return res; } long long fastPow(long long a, int exp) { if(exp == 0) return 1; auto half = fastPow(a, exp / 2); return (((half * half) % mod) * (exp % 2 == 0 ? 1 : a)) % mod; } void input() { scanf("%d%d", &n, &k); n++; for(int i = 0; i < k; i++) { fav[i].resize(n); for(int j = 1; j < n; j++) scanf("%d", &(fav[i][j])); } } int tree[treeSize]; void add(int i, int x) { i += treeSize / 2; while(i) { tree[i] += x; i /= 2; } } int query(int l, int r) { l += treeSize / 2; r += treeSize / 2; int ans = tree[l]; if(l != r) ans += tree[r]; while(l / 2 != r / 2) { if(l % 2 == 0) ans += tree[l + 1]; if(r % 2 == 1) ans += tree[r - 1]; l /= 2; r /= 2; } return ans; } int countInversions(const perm& a) { int ans = 0; for(const auto& i : a) { if(i == a[0]) continue; ans += query(i, n + 1); add(i, 1); } for(const auto& i : a) { if(i == a[0]) continue; add(i, -1); } return ans; } void brut(const perm& p) { if(set.find(p) != set.end()) return; set.insert(p); sum = (sum + countInversions(p)) % mod; for(int i = 0; i < k; i++) brut(p * fav[i]); } int main() { input(); perm start(n); for(int i = 1; i < n; i++) start[i] = i; brut(start); long long ans = (sum * fastPow(set.size(), mod - 2)) % mod; printf("%lld", ans); return 0; }
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 | #include <iostream> #include <set> #include <vector> #define perm std::vector<int> constexpr int maxn = 3000, treeSize = 8192, mod = 1e9 + 7; int n, k; perm fav[maxn]; long long sum; std::set<perm> set; perm operator*(const perm& a, const perm& b) { perm res(n); for(int i = 1; i < n; i++) res[i] = a[b[i]]; return res; } long long fastPow(long long a, int exp) { if(exp == 0) return 1; auto half = fastPow(a, exp / 2); return (((half * half) % mod) * (exp % 2 == 0 ? 1 : a)) % mod; } void input() { scanf("%d%d", &n, &k); n++; for(int i = 0; i < k; i++) { fav[i].resize(n); for(int j = 1; j < n; j++) scanf("%d", &(fav[i][j])); } } int tree[treeSize]; void add(int i, int x) { i += treeSize / 2; while(i) { tree[i] += x; i /= 2; } } int query(int l, int r) { l += treeSize / 2; r += treeSize / 2; int ans = tree[l]; if(l != r) ans += tree[r]; while(l / 2 != r / 2) { if(l % 2 == 0) ans += tree[l + 1]; if(r % 2 == 1) ans += tree[r - 1]; l /= 2; r /= 2; } return ans; } int countInversions(const perm& a) { int ans = 0; for(const auto& i : a) { if(i == a[0]) continue; ans += query(i, n + 1); add(i, 1); } for(const auto& i : a) { if(i == a[0]) continue; add(i, -1); } return ans; } void brut(const perm& p) { if(set.find(p) != set.end()) return; set.insert(p); sum = (sum + countInversions(p)) % mod; for(int i = 0; i < k; i++) brut(p * fav[i]); } int main() { input(); perm start(n); for(int i = 1; i < n; i++) start[i] = i; brut(start); long long ans = (sum * fastPow(set.size(), mod - 2)) % mod; printf("%lld", ans); return 0; } |