1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
#include <iostream>
#include <set>
#include <queue>
#include <memory>
namespace alc {
using namespace std;
struct Graph {
  struct Edge {
    static int encode(int a, int b) {
      if (a > b)
        swap(a, b);
      return (a << 16) | b;
    }
    static void decode(int mid, int &a, int &b) {
      a = mid >> 16;
      b = mid & ((1 << 16) - 1);
    }
  };
  struct Vertex : vector< short > {
  };
  struct Bfs {
    enum {
      UNVISITED = -1
    };
    Graph const &g;
    vector< short > parent;
    queue< short > q;
    Bfs(Graph const &g, int source) : g(g), parent(g.V.size(), UNVISITED) {
      parent[source] = source;
      q.push(source);
    }
    Bfs &run(int destination) {
      while (parent[destination] < 0) {
        int v = q.front();
        q.pop();
        Vertex const &s = g.V[v];
        for (Vertex::const_iterator it = s.begin(); it != s.end(); ++it) {
          int u = *it;
          if (parent[u] == UNVISITED) {
            parent[u] = v;
            q.push(u);
          }
        }
      }
      return *this;
    }
    int distance(int destination) const {
      int result = 0;
      while (parent[destination] != destination) {
        destination = parent[destination];
        ++result;
      }
      return result;
    }
  };
  vector< Vertex > V;
  set< int > E;
  int marker;
  Graph(int n) : V(n), marker(0) {
  }
  void connect(int a, int b) {
    V[a].push_back(b);
    V[b].push_back(a);
    E.insert(Edge::encode(a, b));
  }
  bool connected(int a, int b) const {
    return E.count(Edge::encode(a, b));
  }
};
}
using namespace alc;
struct Transformation : vector< int > {
  set< int > extra;
  Transformation(Graph &g, Graph const &d) {
    vector< shared_ptr< Graph::Bfs > > bfs(g.V.size());
    for (set< int >::const_iterator e = d.E.begin(); e != d.E.end(); ++e)
      if (!g.E.count(*e)) {
        int a, b;
        Graph::Edge::decode(*e, a, b);
        if (!bfs[a]) {
          if (bfs[b])
            std::swap(a, b);
          else
            bfs[a] = make_shared< Graph::Bfs >(g, a);
        }
        Graph::Bfs &bfsa = *bfs[a];
        bfsa.run(b);
        int distance = bfsa.distance(b);
        if (distance > 2) {
          int id = bfsa.parent[b];
          while ((id = bfsa.parent[id]) != a) {
            int mid = Graph::Edge::encode(b, id);
            if (!d.E.count(mid))
              extra.insert(mid);
            this->push_back(mid);
            g.connect(b, id);
          }
        }
        this->push_back(Graph::Edge::encode(a, b));
        g.connect(a, b);
      }
  }
};
int main() {
  ios_base::sync_with_stdio(false);
  cin.tie(NULL);
  int n, m, a, b;
  cin >> n;
  Graph g(n), f(n), full(n);
  cin >> m;
  while (m-- && cin >> a >> b) {
    g.connect(--a, --b);
    full.connect(a, b);
  }
  cin >> m;
  while (m-- && cin >> a >> b) {
    f.connect(--a, --b);
    if (!full.connected(a, b))
      full.connect(a, b);
  }
  Transformation gToFull(g, full), fToFull(f, full);
  int extraToDel = 0, extraToAdd = 0;
  for (set< int >::iterator it = gToFull.extra.begin(); it != gToFull.extra.end(); ++it)
    extraToDel += !fToFull.extra.count(*it);
  for (set< int >::iterator it = fToFull.extra.begin(); it != fToFull.extra.end(); ++it)
    extraToAdd += !gToFull.extra.count(*it);
  cout << gToFull.size() + extraToDel + extraToAdd + fToFull.size() << '\n';
  for (Transformation::iterator it = gToFull.begin(); it != gToFull.end(); ++it) {
    Graph::Edge::decode(*it, a, b);
    cout << "+ " << (a + 1) << ' ' << (b + 1) << '\n';
  }
  for (Transformation::reverse_iterator it = gToFull.rbegin(); it != gToFull.rend(); ++it)
    if (gToFull.extra.count(*it) && !fToFull.extra.count(*it)) {
      Graph::Edge::decode(*it, a, b);
      cout << "- " << (a + 1) << ' ' << (b + 1) << '\n';
    }
  for (Transformation::iterator it = fToFull.begin(); it != fToFull.end(); ++it)
    if (fToFull.extra.count(*it) && !gToFull.extra.count(*it)) {
      Graph::Edge::decode(*it, a, b);
      cout << "+ " << (a + 1) << ' ' << (b + 1) << '\n';
    }
  for (Transformation::reverse_iterator it = fToFull.rbegin(); it != fToFull.rend(); ++it) {
    Graph::Edge::decode(*it, a, b);
    cout << "- " << (a + 1) << ' ' << (b + 1) << '\n';
  }
}