1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
#include <bits/stdc++.h>
#define LL_INF 1000000000000000007

typedef long long ll;
typedef std::string str;
typedef std::pair<ll, ll> llPair;

template <typename T>
using vec = std::vector<T>;

using namespace std;

/**
 * G - graf startowy
 * H - graf ktory mamy uzyskac
 * 
 * s_edges - krawedzie startowe
 * e_edges - krawedzie koncowe
 * 
*/

int root = 1, n;
vec<vec<int>> G;
vec<vec<int>> H;
vec<pair<int, int>> s_edges;
vec<pair<int, int>> e_edges;

bitset<30007> vis;
// {root_dist, node}
vec<pair<int,int>> dists;

int bfs_G() {
  // {dist, v}
  queue<pair<int,int>> q;
  vis.reset();
  dists.clear();
  vis[root] = true;
  q.push({0, root});
  while(!q.empty()) {
    auto [d, v] = q.front();
    q.pop();

    dists.push_back({d, v});
    for(auto e : G[v]) {
      if(!vis[e]) {
        vis[e] = true;
        q.push({d + 1, e});
      }
    }
  }
  sort(dists.begin(), dists.end());
  int dind = 0;
  while(dind <= n && dists[dind].first <= 1) dind++;
  return dind;
}

int bfs_H() {
  // {dist, v}
  queue<pair<int,int>> q;
  vis.reset();
  dists.clear();
  vis[root] = true;
  q.push({0, root});
  while(!q.empty()) {
    auto [d, v] = q.front();
    q.pop();

    dists.push_back({d, v});
    for(auto e : H[v]) {
      if(!vis[e]) {
        vis[e] = true;
        q.push({d + 1, e});
      }
    }
  }
  sort(dists.begin(), dists.end(), [](pair<int,int> p1, pair<int,int> p2) { return p1.first > p2.first; });
  return 0;
}

int main() {
  ios_base::sync_with_stdio(false);
  cout.tie(nullptr);
  cin.tie(nullptr);

  int m;
  cin>>n>>m;
  G = vec<vec<int>>(n + 1);
  H = vec<vec<int>>(n + 1);
  while(m--) {
    int a, b;
    cin>>a>>b;
    G[a].push_back(b);
    G[b].push_back(a);
    s_edges.push_back({a, b});
  }
  cin>>m;
  while(m--) {
    int a, b;
    cin>>a>>b;
    H[a].push_back(b);
    H[b].push_back(a);
    e_edges.push_back({a, b});
  }

  struct ANS { char op; int a; int b; };
  vec<ANS> ans;

  // laczymy wszystkie wierzcholki z korzeniem gwiazdy
  int di = bfs_G();
  for(int i = di; i < dists.size(); i++) {
    ans.push_back({'+', dists[i].second, root});
  }

  // usuwamy wszystkie krawedzie nielaczace z korzeniem
  for(auto [a, b] : s_edges) {
    if(a == root || b == root) continue;
    ans.push_back({'-', a, b});
  }

  // dodajemy krawedzie potrzebne aby graf sie zgadzal
  for(auto [a, b] : e_edges) {
    if(a == root || b == root) continue;
    ans.push_back({'+', a, b});
  }

  // usuwamy niepotrzebne laczenia z korzeniem
  di = bfs_H();
  while(dists[di].first > 1) {
    ans.push_back({'-', root, dists[di].second});
    di++;
  }

  cout<<ans.size()<<"\n";
  for(auto [op, a, b] : ans) cout<<op<<" "<<a<<" "<<b<<"\n";

  cout.flush();
}