1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
#include <iostream>
#include <vector>
#include <unordered_set>
#include <sstream>

using namespace std;

// Struktura reprezentująca krawędź grafu
struct Edge {
	int from;
	int to;

	Edge(int f, int t) : from(f), to(t) {}
};

// Struktura reprezentująca ruch
struct Move {
	char op;
	int from;
	int to;

	Move(char o, int f, int t) : op(o), from(f), to(t) {}
};

// Funkcja sprawdzająca, czy dwa wierzchołki są połączone krawędzią
bool isConnected(const vector<Edge>& graph, int a, int b) {
	for (const auto& edge : graph) {
		if ((edge.from == a && edge.to == b) || (edge.from == b && edge.to == a)) {
			return true;
		}
	}
	return false;
}

// Funkcja sprawdzająca, czy dany wierzchołek jest połączony z wierzchołkami a i b
bool isVertexConnectedWith(const vector<Edge>& graph, int vertex, int a, int b) {
	for (const auto& edge : graph) {
		if ((edge.from == vertex && (edge.to == a || edge.to == b)) || (edge.to == vertex && (edge.from == a || edge.from == b))) {
			return true;
		}
	}
	return false;
}

// Funkcja przekształcająca graf A w graf B i zapisująca potrzebne ruchy
vector<Move> transformGraph(const vector<Edge>& graphA, const vector<Edge>& graphB, int n) {
	vector<Move> moves;
	vector<Edge> currentGraph = graphA;

	// Dodajemy brakujące krawędzie
	for (int a = 1; a <= n; ++a) {
		for (int b = a + 1; b <= n; ++b) {
			if (!isConnected(currentGraph, a, b)) {
				bool hasCommonVertex = false;
				for (int c = 1; c <= n; ++c) {
					if (c != a && c != b && isVertexConnectedWith(currentGraph, c, a, b)) {
						hasCommonVertex = true;
						currentGraph.emplace_back(a, b);
						moves.emplace_back('+', a, b);
						break;
					}
				}
				if (!hasCommonVertex) {
					for (const auto& edge : currentGraph) {
						if (edge.from == a && edge.to != b && !isConnected(currentGraph, b, edge.to)) {
							currentGraph.emplace_back(a, b);
							moves.emplace_back('+', a, b);
							break;
						}
						if (edge.to == a && edge.from != b && !isConnected(currentGraph, b, edge.from)) {
							currentGraph.emplace_back(a, b);
							moves.emplace_back('+', a, b);
							break;
						}
						if (edge.from == b && edge.to != a && !isConnected(currentGraph, a, edge.to)) {
							currentGraph.emplace_back(a, b);
							moves.emplace_back('+', a, b);
							break;
						}
						if (edge.to == b && edge.from != a && !isConnected(currentGraph, a, edge.from)) {
							currentGraph.emplace_back(a, b);
							moves.emplace_back('+', a, b);
							break;
						}
					}
				}
			}
		}
	}

	// Usuwamy nadmiarowe krawędzie
	for (auto it = currentGraph.begin(); it != currentGraph.end();) {
		const Edge& edgeA = *it;
		int from = edgeA.from;
		int to = edgeA.to;
		bool found = false;
		for (const auto& edgeB : graphB) {
			if ((edgeB.from == from && edgeB.to == to) || (edgeB.from == to && edgeB.to == from)) {
				found = true;
				break;
			}
		}
		if (!found) {
			moves.emplace_back('-', from, to);
			it = currentGraph.erase(it);
		}
		else {
			++it;
		}
	}

	return moves;
}

int n, a, u, v;
int main() {
	vector<Edge> graphA;
	vector<Edge> graphB;
	cin >> n;
	cin >> a;
	for (int i = 0; i < a; i++) {
		cin >> u >> v;
		graphA.push_back({ u, v });
	}
	cin >> a;
	for (int i = 0; i < a; i++) {
		cin >> u >> v;
		graphB.push_back({ u, v });
	}

	vector<Move> moves = transformGraph(graphA, graphB, n);

	for (const auto& move : moves) {
		cout << move.op << " " << move.from << " " << move.to << "\n";
	}

	return 0;
}