1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
#include <iostream>
#include <unordered_set>
#include <vector>
#include <queue>
#include <algorithm>
#include <list>

using namespace std;

void bfsAndLinkToFirstVertex(vector<unordered_set<int>>& adjList, int startVertex, list<int>& connectedTo1, vector<bool>& visited) {
    queue<pair<int,bool>> q;
    visited[startVertex] = true;

    for (int neighbor : adjList[startVertex]) {
            if (!visited[neighbor]) {
                q.push(make_pair(neighbor, false));
                visited[neighbor] = true;
            }
        }

    while (!q.empty()) {
        pair<int, bool> currentVertex = q.front();
        q.pop();

        if (currentVertex.second) {
            adjList[currentVertex.first].insert(startVertex);
            adjList[startVertex].insert(currentVertex.first);
            connectedTo1.push_back(currentVertex.first);
        }

        for (int neighbor : adjList[currentVertex.first]) {
            if (!visited[neighbor]) {
                q.push(make_pair(neighbor, true));
                visited[neighbor] = true;
            }
        }
    }
}

int main() {
    // Process the first graph
    int n1, m;
    cin >> n1;
    cin >> m;

    vector<unordered_set<int>> adjList1(n1 + 1);

    for (int k = 0; k < m; ++k) {
        int i, j;
        cin >> i >> j;
        adjList1[i].insert(j);
        adjList1[j].insert(i);
    }

    list<int> connectedTo1;
    vector<bool> visited1(n1 + 1, false);

    bfsAndLinkToFirstVertex(adjList1, 1, connectedTo1, visited1);

    // Process the second graph
    vector<unordered_set<int>> adjList2(n1 + 1);
    vector<bool> notConnectedToVertex1(n1, true);
    notConnectedToVertex1[1] = false;

    int m2;
    cin >> m2;

    for (int k = 0; k < m2; ++k) {
        int i, j;
        cin >> i >> j;
        adjList2[i].insert(j);
        adjList2[j].insert(i);

        if (i == 1) {
            notConnectedToVertex1[j] = false;
        } else if (j == 1) {
            notConnectedToVertex1[i] = false;
        }
    }

    // List to store added edges
    list<pair<int, int>> addedEdges;

    // Add edges from the second graph to the first graph (avoiding duplicates)
    for (int i = 1; i <= n1; ++i) {
        for (int j : adjList2[i]) {
            if (adjList1[i].find(j) == adjList1[i].end()) {
                // Edge doesn't exist in the first graph, add it
                adjList1[i].insert(j);
                adjList1[j].insert(i);
                addedEdges.push_back(make_pair(i, j));
            }
        }
    }

    // List to store deleted vertices
    list<int> deletedVertices;

    // Iterate through connectedTo1 vector from the back
    for (std::list<int>::reverse_iterator rit = connectedTo1.rbegin(); rit != connectedTo1.rend(); ++rit) {
        int currentVertex = *rit;

        if (notConnectedToVertex1[currentVertex]) {
            deletedVertices.push_back(currentVertex);
        }
    }

    cout << connectedTo1.size() + deletedVertices.size() + addedEdges.size() << endl;
    for (int vertex : connectedTo1) {
        cout << "+ " << "1 " << vertex << endl;
    }

    for (auto edge : addedEdges) {
        cout << "+ " << edge.first <<" " << edge.second << endl;
    }

    for (auto vertex : deletedVertices) {
        cout << "- " << "1" << " " << vertex << endl;
    }

    return 0;
}