#pragma GCC optimize ("O3") #include <bits/stdc++.h> using namespace std; #define rep(i, a, b) for (int i = (a); i <= (b); i++) #define per(i, a, b) for (int i = (b); i >= (a); i--) #define SZ(x) ((int)x.size()) #define all(x) x.begin(), x.end() #define pb push_back #define mp make_pair #define mt make_tuple #define st first #define nd second #define K long double using ll = long long; using vi = vector<int>; using pii = pair<int, int>; using pll = pair<ll, ll>; auto &operator<<(auto &o, pair<auto, auto> p) { return o << "(" << p.st << ", " << p.nd << ")"; } auto operator<<(auto &o, auto x)->decltype(end(x), o) { o << "{"; int i=0; for(auto e: x) o << ", " + 2*!i++ << e; return o << "}"; } #define deb(x...) cerr << "[" #x "]: ", [](auto...$) { ((cerr<<$<<"; "),...) << endl; }(x) const int nax = 3005; int a[nax][nax]; int n, k; const int mod = 1e9 + 7; ll pp(ll a, ll b){ ll ans = 1; while(b){ if(b & 1){ ans *= a; ans %= mod; } a *= a; a %= mod; b /= 2; } return ans; } ll inv(ll a){ // return 1.0 / a; return pp(a, mod - 2); } void add(int &x, int y){ x += y; if(x >= mod) x -= mod; } int par[nax * nax]; int sz[nax * nax]; int f(int x){ if(par[x] == x) return par[x]; return par[x] = f(par[x]); } int u(int x, int y){ x = f(x); y = f(y); if(x == y) return 0; if(sz[x] > sz[y]) swap(x, y); par[x] = y; sz[y] += sz[x]; return 1; } vector<pii> kto[nax * nax]; void solve(){ cin >> n >> k; rep(i, 1, k){ rep(j, 1, n) cin >> a[i][j]; } rep(i, 1, n * n){ par[i] = i; sz[i] = 1; } rep(id, 1, k){ int nowe = 0; rep(i, 1, n){ int ti = a[id][i]; int b1 = (i - 1) * n; int b2 = (ti - 1) * n; rep(j, 1, n){ b1 += 1; if(i == j) continue; int other = b2 + a[id][j]; if(par[b1] == par[other] || f(b1) == f(other)) continue; nowe += u(b1, b2 + a[id][j]); } } // if(nowe == 0) break; } rep(i, 1, n){ rep(j, 1, n){ if(i == j) continue; int who = (i - 1) * n + j; kto[f(who)].pb({i, j}); } } int ans = 0; rep(i, 1, n * n){ if(kto[i].empty()) continue; auto cyc = kto[i]; int good = 0; int bad = 0; for(auto [x, y] : cyc){ if(x < y) good += 1; else bad += 1; } // deb(cyc, good, bad); ll cur = 1LL * good * bad % mod; cur *= inv(good + bad); cur %= mod; add(ans, (int)cur); } cout << ans << "\n"; } int main() { ios::sync_with_stdio(0); cin.tie(0); int tt = 1; // cin >> tt; rep(te, 1, tt) solve(); return 0; }
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 | #pragma GCC optimize ("O3") #include <bits/stdc++.h> using namespace std; #define rep(i, a, b) for (int i = (a); i <= (b); i++) #define per(i, a, b) for (int i = (b); i >= (a); i--) #define SZ(x) ((int)x.size()) #define all(x) x.begin(), x.end() #define pb push_back #define mp make_pair #define mt make_tuple #define st first #define nd second #define K long double using ll = long long; using vi = vector<int>; using pii = pair<int, int>; using pll = pair<ll, ll>; auto &operator<<(auto &o, pair<auto, auto> p) { return o << "(" << p.st << ", " << p.nd << ")"; } auto operator<<(auto &o, auto x)->decltype(end(x), o) { o << "{"; int i=0; for(auto e: x) o << ", " + 2*!i++ << e; return o << "}"; } #define deb(x...) cerr << "[" #x "]: ", [](auto...$) { ((cerr<<$<<"; "),...) << endl; }(x) const int nax = 3005; int a[nax][nax]; int n, k; const int mod = 1e9 + 7; ll pp(ll a, ll b){ ll ans = 1; while(b){ if(b & 1){ ans *= a; ans %= mod; } a *= a; a %= mod; b /= 2; } return ans; } ll inv(ll a){ // return 1.0 / a; return pp(a, mod - 2); } void add(int &x, int y){ x += y; if(x >= mod) x -= mod; } int par[nax * nax]; int sz[nax * nax]; int f(int x){ if(par[x] == x) return par[x]; return par[x] = f(par[x]); } int u(int x, int y){ x = f(x); y = f(y); if(x == y) return 0; if(sz[x] > sz[y]) swap(x, y); par[x] = y; sz[y] += sz[x]; return 1; } vector<pii> kto[nax * nax]; void solve(){ cin >> n >> k; rep(i, 1, k){ rep(j, 1, n) cin >> a[i][j]; } rep(i, 1, n * n){ par[i] = i; sz[i] = 1; } rep(id, 1, k){ int nowe = 0; rep(i, 1, n){ int ti = a[id][i]; int b1 = (i - 1) * n; int b2 = (ti - 1) * n; rep(j, 1, n){ b1 += 1; if(i == j) continue; int other = b2 + a[id][j]; if(par[b1] == par[other] || f(b1) == f(other)) continue; nowe += u(b1, b2 + a[id][j]); } } // if(nowe == 0) break; } rep(i, 1, n){ rep(j, 1, n){ if(i == j) continue; int who = (i - 1) * n + j; kto[f(who)].pb({i, j}); } } int ans = 0; rep(i, 1, n * n){ if(kto[i].empty()) continue; auto cyc = kto[i]; int good = 0; int bad = 0; for(auto [x, y] : cyc){ if(x < y) good += 1; else bad += 1; } // deb(cyc, good, bad); ll cur = 1LL * good * bad % mod; cur *= inv(good + bad); cur %= mod; add(ans, (int)cur); } cout << ans << "\n"; } int main() { ios::sync_with_stdio(0); cin.tie(0); int tt = 1; // cin >> tt; rep(te, 1, tt) solve(); return 0; } |