#include<bits/stdc++.h> #define FOR(i,s,e) for(int i=(s); i<=(e); i++) #define FORD(i,s,e) for(int i=(s); i>=(e); i--) #define ALL(k) (k).begin(), (k).end() #define e1 first #define e2 second #define mp make_pair using namespace std; using LL=long long; using LD=long double; using PII=pair<int,int>; const int MAXN = 3111; const LL MOD = ((LL)1e9)+7; int perms[MAXN][MAXN]; LL power_mod(LL a, LL exp){ LL res = 1; while(exp > 0){ if (exp % 2){ res = (res*a) % MOD; } exp /= 2; a *= a; a %= MOD; } return res; } LL mod_inverse(LL a){ return power_mod(a, MOD-2); } // int perm_apply_a[MAXN]; // int perm_apply_b[MAXN]; // int perm_apply_c[MAXN]; // int apply_perm(int perm_length){ // FOR(i,1,n){ // perm_apply_c[i] = perm_apply_b[perm_apply_a[i]]; // } // } vector<pair<int, vector<int>>> cycles; set<int> considered_cycles; set<PII> good_cycle_pairs; set<int> poisoned_cycles; vector<int> node_in_cycles[MAXN]; int unionfind[MAXN]; int poisoned_unionfind[MAXN]; int find(int v){ if (unionfind[v] < 0){ return v; } unionfind[v] = find(unionfind[v]); return unionfind[v]; } bool join(int a, int b){ int aa = find(a), bb = find(b); if (aa == bb){ return false; } if (unionfind[aa] > unionfind[bb]){ swap(aa, bb); } unionfind[aa] += unionfind[bb]; unionfind[bb] = aa; return true; } int vis[MAXN]; int values[MAXN]; LL prob_to_go[MAXN]; int main(){ int n, k; scanf("%d%d", &n, &k); // printf("n %d k %d\n", n, k); FOR(i,1,n){ unionfind[i] = -1; } FOR(i,1,k){ FOR(j, 1, n){ scanf("%d", &perms[i][j]); } } FOR(i,1,k){ // find all cycles FOR(j,1,n){ vis[j] = 0; } FOR(j,1,n){ if (perms[i][j] == j){ continue; } if (vis[j]){ continue; } // there's a cycle touching j int cycle_no = cycles.size(); vector<int> current_cycle; current_cycle.push_back(j); node_in_cycles[j].push_back(cycle_no); int k = perms[i][j]; while (k != j){ current_cycle.push_back(k); node_in_cycles[k].push_back(cycle_no); vis[k] = 1; join(k, perms[i][k]); k = perms[i][k]; } // and this cycle is described in current_cycle. cycles.emplace_back(i, current_cycle); // printf("Adding cycle no. %d within genperm %d: ", cycles.size()-1, i); // for(auto &it: current_cycle){ // printf("%d ", it); // } // printf("\n"); } } // look at all cycles, and take one cycle for each node. // for each node, consider if its permutations are only within a group. FOR(j,1,n){ int group_size = -unionfind[find(j)]; map<int, vector<int>> cycle_signatures; for(auto &cycle_no : node_in_cycles[j]){ if (cycles[cycle_no].e2.size() != group_size){ poisoned_cycles.insert(cycle_no); poisoned_unionfind[find(j)] = 1; } int cycle_initial_perm = cycles[cycle_no].e1; int j_goes_to = perms[cycle_initial_perm][j]; if (cycle_signatures.find(j_goes_to) != cycle_signatures.end()){ cycle_signatures[j_goes_to].push_back(cycle_no); } else{ cycle_signatures[j_goes_to] = vector<int>({cycle_no}); } } if (find(j) != j){ continue; } if (!poisoned_unionfind[find(j)] && node_in_cycles[j].size() > 1){ // then all others must be in the group of node_in_cycles[0] int main_cycle_id = node_in_cycles[j][0]; int main_cycle_initial_perm = cycles[main_cycle_id].e1; vector<int> main_cycle = cycles[main_cycle_id].e2; int cycle_length = main_cycle.size(); // simulate cycle group generation, start with e for(auto &node : main_cycle){ values[node] = node; } // then simulate each until back at one. FOR(l, 1, cycle_length){ // run simulation for (auto &node : main_cycle){ values[node] = perms[main_cycle_initial_perm][values[node]]; } int j_goes_to = values[j]; // check signature for (auto signature: cycle_signatures[j_goes_to]){ bool is_okay = true; for (auto &v : main_cycle){ if (perms[signature][v] != perms[main_cycle_initial_perm][v]){ is_okay = false; break; } } if (!is_okay){ poisoned_unionfind[find(j)] = 1; break; } } if (poisoned_unionfind[find(j)] == 1){ break; } } } } // printf("Poisoning unionfinds\n"); // FOR(i,1,n){ // printf("%d: find %d fu %d poisoned %d\n", i, find(i), unionfind[i], poisoned_unionfind[i]); // } // poison all bad nodes FOR(i,1,n){ if (poisoned_unionfind[find(i)]){ poisoned_unionfind[i] = 1; } } // follow. // for poisoned, the inner result is |c|*|c-1|/4 // for non-poisoned, the inner results comes from simulation // for multi, we'll use DP LL ans = 0; FOR(j,1,n){ if (find(j) != j){ continue; } if (unionfind[j] == -1){ continue; } // poisoned - then just run on the size if (poisoned_unionfind[j]){ int group_size = -unionfind[j]; ans += (group_size * (LL)(group_size-1) * mod_inverse(4))%MOD; ans %= MOD; } // not poisoned - simulate group else{ int main_cycle_id = node_in_cycles[j][0]; int main_cycle_initial_perm = cycles[main_cycle_id].e1; vector<int> main_cycle = cycles[main_cycle_id].e2; int cycle_length = main_cycle.size(); int local_inversions = 0; // simulate cycle group generation, start with e for(auto &node : main_cycle){ values[node] = node; } // then simulate each until back at one. vector<int> sorted_cycle = main_cycle; sort(ALL(sorted_cycle)); FOR(l, 1, cycle_length){ // run simulation for (auto &node : main_cycle){ values[node] = perms[main_cycle_initial_perm][values[node]]; } // calculate inversions FOR(i,0,sorted_cycle.size()-1){ FOR(j,i+1,sorted_cycle.size()-1){ if(values[sorted_cycle[j]] < values[sorted_cycle[i]]){ local_inversions++; } } } } ans += ((LL)(local_inversions) * mod_inverse(cycle_length))%MOD; ans %= MOD; } } // finally, do dynamic programming on disjoint instances. FOR(i,1,n){ //for the position i, FOR(j,1,n){ if (find(j) != find(i)) { continue; } LL j_group_size = -unionfind[find(j)]; LL current_prob = mod_inverse(j_group_size); // for the value j in i's cycle, which has 1/|is cycle| probability of showing up FOR(k,j+1,n){ // and value k outside of i's cycle if (find(k) == find(j)){ continue; } // add probability of k being earlier * probabiliy of j here; ans += (current_prob * prob_to_go[k])%MOD; ans %= MOD; } prob_to_go[j] += current_prob; prob_to_go[j] %= MOD; } } printf("%lld\n", ans); }
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 | #include<bits/stdc++.h> #define FOR(i,s,e) for(int i=(s); i<=(e); i++) #define FORD(i,s,e) for(int i=(s); i>=(e); i--) #define ALL(k) (k).begin(), (k).end() #define e1 first #define e2 second #define mp make_pair using namespace std; using LL=long long; using LD=long double; using PII=pair<int,int>; const int MAXN = 3111; const LL MOD = ((LL)1e9)+7; int perms[MAXN][MAXN]; LL power_mod(LL a, LL exp){ LL res = 1; while(exp > 0){ if (exp % 2){ res = (res*a) % MOD; } exp /= 2; a *= a; a %= MOD; } return res; } LL mod_inverse(LL a){ return power_mod(a, MOD-2); } // int perm_apply_a[MAXN]; // int perm_apply_b[MAXN]; // int perm_apply_c[MAXN]; // int apply_perm(int perm_length){ // FOR(i,1,n){ // perm_apply_c[i] = perm_apply_b[perm_apply_a[i]]; // } // } vector<pair<int, vector<int>>> cycles; set<int> considered_cycles; set<PII> good_cycle_pairs; set<int> poisoned_cycles; vector<int> node_in_cycles[MAXN]; int unionfind[MAXN]; int poisoned_unionfind[MAXN]; int find(int v){ if (unionfind[v] < 0){ return v; } unionfind[v] = find(unionfind[v]); return unionfind[v]; } bool join(int a, int b){ int aa = find(a), bb = find(b); if (aa == bb){ return false; } if (unionfind[aa] > unionfind[bb]){ swap(aa, bb); } unionfind[aa] += unionfind[bb]; unionfind[bb] = aa; return true; } int vis[MAXN]; int values[MAXN]; LL prob_to_go[MAXN]; int main(){ int n, k; scanf("%d%d", &n, &k); // printf("n %d k %d\n", n, k); FOR(i,1,n){ unionfind[i] = -1; } FOR(i,1,k){ FOR(j, 1, n){ scanf("%d", &perms[i][j]); } } FOR(i,1,k){ // find all cycles FOR(j,1,n){ vis[j] = 0; } FOR(j,1,n){ if (perms[i][j] == j){ continue; } if (vis[j]){ continue; } // there's a cycle touching j int cycle_no = cycles.size(); vector<int> current_cycle; current_cycle.push_back(j); node_in_cycles[j].push_back(cycle_no); int k = perms[i][j]; while (k != j){ current_cycle.push_back(k); node_in_cycles[k].push_back(cycle_no); vis[k] = 1; join(k, perms[i][k]); k = perms[i][k]; } // and this cycle is described in current_cycle. cycles.emplace_back(i, current_cycle); // printf("Adding cycle no. %d within genperm %d: ", cycles.size()-1, i); // for(auto &it: current_cycle){ // printf("%d ", it); // } // printf("\n"); } } // look at all cycles, and take one cycle for each node. // for each node, consider if its permutations are only within a group. FOR(j,1,n){ int group_size = -unionfind[find(j)]; map<int, vector<int>> cycle_signatures; for(auto &cycle_no : node_in_cycles[j]){ if (cycles[cycle_no].e2.size() != group_size){ poisoned_cycles.insert(cycle_no); poisoned_unionfind[find(j)] = 1; } int cycle_initial_perm = cycles[cycle_no].e1; int j_goes_to = perms[cycle_initial_perm][j]; if (cycle_signatures.find(j_goes_to) != cycle_signatures.end()){ cycle_signatures[j_goes_to].push_back(cycle_no); } else{ cycle_signatures[j_goes_to] = vector<int>({cycle_no}); } } if (find(j) != j){ continue; } if (!poisoned_unionfind[find(j)] && node_in_cycles[j].size() > 1){ // then all others must be in the group of node_in_cycles[0] int main_cycle_id = node_in_cycles[j][0]; int main_cycle_initial_perm = cycles[main_cycle_id].e1; vector<int> main_cycle = cycles[main_cycle_id].e2; int cycle_length = main_cycle.size(); // simulate cycle group generation, start with e for(auto &node : main_cycle){ values[node] = node; } // then simulate each until back at one. FOR(l, 1, cycle_length){ // run simulation for (auto &node : main_cycle){ values[node] = perms[main_cycle_initial_perm][values[node]]; } int j_goes_to = values[j]; // check signature for (auto signature: cycle_signatures[j_goes_to]){ bool is_okay = true; for (auto &v : main_cycle){ if (perms[signature][v] != perms[main_cycle_initial_perm][v]){ is_okay = false; break; } } if (!is_okay){ poisoned_unionfind[find(j)] = 1; break; } } if (poisoned_unionfind[find(j)] == 1){ break; } } } } // printf("Poisoning unionfinds\n"); // FOR(i,1,n){ // printf("%d: find %d fu %d poisoned %d\n", i, find(i), unionfind[i], poisoned_unionfind[i]); // } // poison all bad nodes FOR(i,1,n){ if (poisoned_unionfind[find(i)]){ poisoned_unionfind[i] = 1; } } // follow. // for poisoned, the inner result is |c|*|c-1|/4 // for non-poisoned, the inner results comes from simulation // for multi, we'll use DP LL ans = 0; FOR(j,1,n){ if (find(j) != j){ continue; } if (unionfind[j] == -1){ continue; } // poisoned - then just run on the size if (poisoned_unionfind[j]){ int group_size = -unionfind[j]; ans += (group_size * (LL)(group_size-1) * mod_inverse(4))%MOD; ans %= MOD; } // not poisoned - simulate group else{ int main_cycle_id = node_in_cycles[j][0]; int main_cycle_initial_perm = cycles[main_cycle_id].e1; vector<int> main_cycle = cycles[main_cycle_id].e2; int cycle_length = main_cycle.size(); int local_inversions = 0; // simulate cycle group generation, start with e for(auto &node : main_cycle){ values[node] = node; } // then simulate each until back at one. vector<int> sorted_cycle = main_cycle; sort(ALL(sorted_cycle)); FOR(l, 1, cycle_length){ // run simulation for (auto &node : main_cycle){ values[node] = perms[main_cycle_initial_perm][values[node]]; } // calculate inversions FOR(i,0,sorted_cycle.size()-1){ FOR(j,i+1,sorted_cycle.size()-1){ if(values[sorted_cycle[j]] < values[sorted_cycle[i]]){ local_inversions++; } } } } ans += ((LL)(local_inversions) * mod_inverse(cycle_length))%MOD; ans %= MOD; } } // finally, do dynamic programming on disjoint instances. FOR(i,1,n){ //for the position i, FOR(j,1,n){ if (find(j) != find(i)) { continue; } LL j_group_size = -unionfind[find(j)]; LL current_prob = mod_inverse(j_group_size); // for the value j in i's cycle, which has 1/|is cycle| probability of showing up FOR(k,j+1,n){ // and value k outside of i's cycle if (find(k) == find(j)){ continue; } // add probability of k being earlier * probabiliy of j here; ans += (current_prob * prob_to_go[k])%MOD; ans %= MOD; } prob_to_go[j] += current_prob; prob_to_go[j] %= MOD; } } printf("%lld\n", ans); } |