#include <bits/stdc++.h> using std::cin, std::cout, std::vector; //=== void init_io() { cin.tie(nullptr); std::ios::sync_with_stdio(false); } template<unsigned MOD> class Modulo { public: constexpr Modulo(unsigned x=0):v(x) {} unsigned get() const { return v; } Modulo operator+(Modulo b) const { unsigned res = v+b.v; if (res >= MOD) res -= MOD; return res; } void operator+=(Modulo b) { *this = *this + b; } Modulo operator-(Modulo b) const { return *this + Modulo(MOD-b.v); } void operator-=(Modulo b) { *this = *this - b; } Modulo operator*(Modulo b) const { return Modulo(std::uint64_t(v) * b.v % MOD); } void operator*=(Modulo b) { *this = *this * b; } private: unsigned v; }; //=== using Mod = Modulo<1'000'000'007>; constexpr Mod inv2 = Mod(500'000'004); // Returns a sequence of 0s and 1s vector<char> read_text(const unsigned n) { vector<char> v; v.reserve(n); unsigned x; cin >> x; for (unsigned i = 0; i < n; ++i) { unsigned y; cin >> y; v.push_back(y > x); x = y; } return v; } Mod sum_below(const unsigned n) { return Mod(n) * (Mod(n) - Mod(1)) * inv2; } vector<vector<unsigned>> divisors; void calc_divisors(const unsigned max_n) { divisors.resize(max_n+1); for (unsigned d=1; d <= max_n; ++d) { for (unsigned x=d; x <= max_n; x += d) { divisors[x].push_back(d); } } } Mod all_possibilities(const unsigned Alen, const unsigned Blen) { // Includes empty sequences of +-. return sum_below(Alen+2) * sum_below(Blen+2); } // Calculates pairs that are invalid. class Calculator { public: Calculator(const unsigned Alen1, const unsigned max_points1): Alen(Alen1), max_points(max_points1) {} Mod final_count() const { return count; } void add_floating_point(const unsigned j, const unsigned distance) { if (floating_points.size() == max_points) return; count -= current_count_from(j); floating_points.push_back(distance); sum_i_floating += Mod(distance) * Mod(floating_points.size()-1); sum_floating += Mod(distance); if (frozen_points.size() + floating_points.size() - frozen_points_start > max_points) { sum_frozen -= Mod(frozen_points[frozen_points_start]); sum_i_frozen -= Mod(frozen_points.size() - frozen_points_start - 1) * Mod(frozen_points[frozen_points_start]); ++frozen_points_start; } count += current_count_from(j); } void freeze_floating_points(const unsigned j) { assert(!floating_points.empty()); const unsigned num_floating = floating_points.size(); count -= current_count_from(j); sum_i_frozen += Mod(num_floating) * sum_frozen; sum_i_frozen += Mod(j) * sum_below(num_floating) - sum_i_floating; sum_frozen += Mod(j) * Mod(num_floating) - sum_floating; for (auto it = floating_points.rbegin(); it != floating_points.rend(); ++it) { frozen_points.push_back(j - *it); } floating_points.clear(); sum_i_floating = 0; sum_floating = 0; count += current_count_from(j); } private: Mod current_count_from(const unsigned j) const { const unsigned remaining = Alen+1-j; Mod result = 0; const unsigned num_floating = floating_points.size(); if (num_floating != 0) { result += (Mod(num_floating) * Mod(max_points) - sum_below(num_floating)) * (Mod(remaining)*Mod(Alen) - sum_below(remaining)); result += Mod(remaining) * ( sum_i_floating - Mod(max_points) * sum_floating); } const unsigned num_frozen = frozen_points.size() - frozen_points_start; if (num_frozen != 0) { result += Mod(remaining) * (Mod(max_points-num_floating) * sum_frozen - sum_i_frozen); } // Undo the first point. if (num_floating != 0) { result -= Mod(max_points) * (Mod(remaining) * Mod(Alen-floating_points[0]) - sum_below(remaining)); } else if (num_frozen != 0) { result -= Mod(max_points) * Mod(remaining) * Mod(frozen_points.back()); } return result; } unsigned Alen; unsigned max_points; Mod count = 0; vector<unsigned> frozen_points; unsigned frozen_points_start = 0; vector<unsigned> floating_points; // distances from j Mod sum_frozen = 0; // sum frozen[i] Mod sum_i_frozen = 0; // sum i * frozen[i] from the back Mod sum_floating = 0; // sum of distances Mod sum_i_floating = 0; // sum i * floating[i] from the back }; void add_invalid_one_side(const vector<char> &A, const unsigned max_points, vector<Mod> &counts) { const unsigned Alen = A.size(); vector<Calculator> calculators; calculators.reserve(counts.size()); for (unsigned k=0; k<counts.size(); ++k) { calculators.emplace_back(Alen, max_points); } char last = '?'; unsigned run_len = 0; for (unsigned j = 0; j < Alen; ++j) { if (A[j] != last) { for (unsigned k = 1; k < run_len; ++k) { calculators[k].freeze_floating_points(j); } run_len = 0; last = A[j]; } ++run_len; if (run_len >= 2) { for (const unsigned k : divisors[run_len-1]) { calculators[k].add_floating_point(j+1, run_len-1); } } } for (unsigned k=1; k<counts.size(); ++k) { counts[k] += calculators[k].final_count(); } } vector<Mod> solve(const vector<char> &A, const vector<char> &B) { const unsigned Alen = A.size(); const unsigned Blen = B.size(); // counts[k]: count illegals such that make max run <= k impossible vector<Mod> counts(Alen + Blen + 2, Mod(0)); add_invalid_one_side(A, Blen+2, counts); add_invalid_one_side(B, Alen+2, counts); // Count valid max run == k. for (unsigned i=counts.size()-1u; i>=2u; --i) { counts[i] = counts[i-1] - counts[i]; } counts[1] = all_possibilities(Alen, Blen) - counts[1]; return counts; } int main() { init_io(); unsigned Alen, Blen; cin >> Alen >> Blen; --Alen; --Blen; const vector<char> A = read_text(Alen); const vector<char> B = read_text(Blen); calc_divisors(std::max(Alen, Blen)); const vector<Mod> res = solve(A, B); for (const Mod x : res) { cout << x.get() << ' '; } cout << "\n"; }
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 | #include <bits/stdc++.h> using std::cin, std::cout, std::vector; //=== void init_io() { cin.tie(nullptr); std::ios::sync_with_stdio(false); } template<unsigned MOD> class Modulo { public: constexpr Modulo(unsigned x=0):v(x) {} unsigned get() const { return v; } Modulo operator+(Modulo b) const { unsigned res = v+b.v; if (res >= MOD) res -= MOD; return res; } void operator+=(Modulo b) { *this = *this + b; } Modulo operator-(Modulo b) const { return *this + Modulo(MOD-b.v); } void operator-=(Modulo b) { *this = *this - b; } Modulo operator*(Modulo b) const { return Modulo(std::uint64_t(v) * b.v % MOD); } void operator*=(Modulo b) { *this = *this * b; } private: unsigned v; }; //=== using Mod = Modulo<1'000'000'007>; constexpr Mod inv2 = Mod(500'000'004); // Returns a sequence of 0s and 1s vector<char> read_text(const unsigned n) { vector<char> v; v.reserve(n); unsigned x; cin >> x; for (unsigned i = 0; i < n; ++i) { unsigned y; cin >> y; v.push_back(y > x); x = y; } return v; } Mod sum_below(const unsigned n) { return Mod(n) * (Mod(n) - Mod(1)) * inv2; } vector<vector<unsigned>> divisors; void calc_divisors(const unsigned max_n) { divisors.resize(max_n+1); for (unsigned d=1; d <= max_n; ++d) { for (unsigned x=d; x <= max_n; x += d) { divisors[x].push_back(d); } } } Mod all_possibilities(const unsigned Alen, const unsigned Blen) { // Includes empty sequences of +-. return sum_below(Alen+2) * sum_below(Blen+2); } // Calculates pairs that are invalid. class Calculator { public: Calculator(const unsigned Alen1, const unsigned max_points1): Alen(Alen1), max_points(max_points1) {} Mod final_count() const { return count; } void add_floating_point(const unsigned j, const unsigned distance) { if (floating_points.size() == max_points) return; count -= current_count_from(j); floating_points.push_back(distance); sum_i_floating += Mod(distance) * Mod(floating_points.size()-1); sum_floating += Mod(distance); if (frozen_points.size() + floating_points.size() - frozen_points_start > max_points) { sum_frozen -= Mod(frozen_points[frozen_points_start]); sum_i_frozen -= Mod(frozen_points.size() - frozen_points_start - 1) * Mod(frozen_points[frozen_points_start]); ++frozen_points_start; } count += current_count_from(j); } void freeze_floating_points(const unsigned j) { assert(!floating_points.empty()); const unsigned num_floating = floating_points.size(); count -= current_count_from(j); sum_i_frozen += Mod(num_floating) * sum_frozen; sum_i_frozen += Mod(j) * sum_below(num_floating) - sum_i_floating; sum_frozen += Mod(j) * Mod(num_floating) - sum_floating; for (auto it = floating_points.rbegin(); it != floating_points.rend(); ++it) { frozen_points.push_back(j - *it); } floating_points.clear(); sum_i_floating = 0; sum_floating = 0; count += current_count_from(j); } private: Mod current_count_from(const unsigned j) const { const unsigned remaining = Alen+1-j; Mod result = 0; const unsigned num_floating = floating_points.size(); if (num_floating != 0) { result += (Mod(num_floating) * Mod(max_points) - sum_below(num_floating)) * (Mod(remaining)*Mod(Alen) - sum_below(remaining)); result += Mod(remaining) * ( sum_i_floating - Mod(max_points) * sum_floating); } const unsigned num_frozen = frozen_points.size() - frozen_points_start; if (num_frozen != 0) { result += Mod(remaining) * (Mod(max_points-num_floating) * sum_frozen - sum_i_frozen); } // Undo the first point. if (num_floating != 0) { result -= Mod(max_points) * (Mod(remaining) * Mod(Alen-floating_points[0]) - sum_below(remaining)); } else if (num_frozen != 0) { result -= Mod(max_points) * Mod(remaining) * Mod(frozen_points.back()); } return result; } unsigned Alen; unsigned max_points; Mod count = 0; vector<unsigned> frozen_points; unsigned frozen_points_start = 0; vector<unsigned> floating_points; // distances from j Mod sum_frozen = 0; // sum frozen[i] Mod sum_i_frozen = 0; // sum i * frozen[i] from the back Mod sum_floating = 0; // sum of distances Mod sum_i_floating = 0; // sum i * floating[i] from the back }; void add_invalid_one_side(const vector<char> &A, const unsigned max_points, vector<Mod> &counts) { const unsigned Alen = A.size(); vector<Calculator> calculators; calculators.reserve(counts.size()); for (unsigned k=0; k<counts.size(); ++k) { calculators.emplace_back(Alen, max_points); } char last = '?'; unsigned run_len = 0; for (unsigned j = 0; j < Alen; ++j) { if (A[j] != last) { for (unsigned k = 1; k < run_len; ++k) { calculators[k].freeze_floating_points(j); } run_len = 0; last = A[j]; } ++run_len; if (run_len >= 2) { for (const unsigned k : divisors[run_len-1]) { calculators[k].add_floating_point(j+1, run_len-1); } } } for (unsigned k=1; k<counts.size(); ++k) { counts[k] += calculators[k].final_count(); } } vector<Mod> solve(const vector<char> &A, const vector<char> &B) { const unsigned Alen = A.size(); const unsigned Blen = B.size(); // counts[k]: count illegals such that make max run <= k impossible vector<Mod> counts(Alen + Blen + 2, Mod(0)); add_invalid_one_side(A, Blen+2, counts); add_invalid_one_side(B, Alen+2, counts); // Count valid max run == k. for (unsigned i=counts.size()-1u; i>=2u; --i) { counts[i] = counts[i-1] - counts[i]; } counts[1] = all_possibilities(Alen, Blen) - counts[1]; return counts; } int main() { init_io(); unsigned Alen, Blen; cin >> Alen >> Blen; --Alen; --Blen; const vector<char> A = read_text(Alen); const vector<char> B = read_text(Blen); calc_divisors(std::max(Alen, Blen)); const vector<Mod> res = solve(A, B); for (const Mod x : res) { cout << x.get() << ' '; } cout << "\n"; } |