#include <bits/stdc++.h> #ifndef ROBIN_HOOD_H_INCLUDED #define ROBIN_HOOD_H_INCLUDED // see https://semver.org/ #define ROBIN_HOOD_VERSION_MAJOR 3 // for incompatible API changes #define ROBIN_HOOD_VERSION_MINOR 11 // for adding functionality in a backwards-compatible manner #define ROBIN_HOOD_VERSION_PATCH 5 // for backwards-compatible bug fixes #include <algorithm> #include <cstdlib> #include <cstring> #include <functional> #include <limits> #include <memory> // only to support hash of smart pointers #include <stdexcept> #include <string> #include <type_traits> #include <utility> #if __cplusplus >= 201703L # include <string_view> #endif // #define ROBIN_HOOD_LOG_ENABLED #ifdef ROBIN_HOOD_LOG_ENABLED # include <iostream> # define ROBIN_HOOD_LOG(...) \ std::cout << __FUNCTION__ << "@" << __LINE__ << ": " << __VA_ARGS__ << std::endl; #else # define ROBIN_HOOD_LOG(x) #endif // #define ROBIN_HOOD_TRACE_ENABLED #ifdef ROBIN_HOOD_TRACE_ENABLED # include <iostream> # define ROBIN_HOOD_TRACE(...) \ std::cout << __FUNCTION__ << "@" << __LINE__ << ": " << __VA_ARGS__ << std::endl; #else # define ROBIN_HOOD_TRACE(x) #endif // #define ROBIN_HOOD_COUNT_ENABLED #ifdef ROBIN_HOOD_COUNT_ENABLED # include <iostream> # define ROBIN_HOOD_COUNT(x) ++counts().x; namespace robin_hood { struct Counts { uint64_t shiftUp{}; uint64_t shiftDown{}; }; inline std::ostream& operator<<(std::ostream& os, Counts const& c) { return os << c.shiftUp << " shiftUp" << std::endl << c.shiftDown << " shiftDown" << std::endl; } static Counts& counts() { static Counts counts{}; return counts; } } // namespace robin_hood #else # define ROBIN_HOOD_COUNT(x) #endif // all non-argument macros should use this facility. See // https://www.fluentcpp.com/2019/05/28/better-macros-better-flags/ #define ROBIN_HOOD(x) ROBIN_HOOD_PRIVATE_DEFINITION_##x() // mark unused members with this macro #define ROBIN_HOOD_UNUSED(identifier) // bitness #if SIZE_MAX == UINT32_MAX # define ROBIN_HOOD_PRIVATE_DEFINITION_BITNESS() 32 #elif SIZE_MAX == UINT64_MAX # define ROBIN_HOOD_PRIVATE_DEFINITION_BITNESS() 64 #else # error Unsupported bitness #endif // endianess #ifdef _MSC_VER # define ROBIN_HOOD_PRIVATE_DEFINITION_LITTLE_ENDIAN() 1 # define ROBIN_HOOD_PRIVATE_DEFINITION_BIG_ENDIAN() 0 #else # define ROBIN_HOOD_PRIVATE_DEFINITION_LITTLE_ENDIAN() \ (__BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__) # define ROBIN_HOOD_PRIVATE_DEFINITION_BIG_ENDIAN() (__BYTE_ORDER__ == __ORDER_BIG_ENDIAN__) #endif // inline #ifdef _MSC_VER # define ROBIN_HOOD_PRIVATE_DEFINITION_NOINLINE() __declspec(noinline) #else # define ROBIN_HOOD_PRIVATE_DEFINITION_NOINLINE() __attribute__((noinline)) #endif // exceptions #if !defined(__cpp_exceptions) && !defined(__EXCEPTIONS) && !defined(_CPPUNWIND) # define ROBIN_HOOD_PRIVATE_DEFINITION_HAS_EXCEPTIONS() 0 #else # define ROBIN_HOOD_PRIVATE_DEFINITION_HAS_EXCEPTIONS() 1 #endif // count leading/trailing bits #if !defined(ROBIN_HOOD_DISABLE_INTRINSICS) # ifdef _MSC_VER # if ROBIN_HOOD(BITNESS) == 32 # define ROBIN_HOOD_PRIVATE_DEFINITION_BITSCANFORWARD() _BitScanForward # else # define ROBIN_HOOD_PRIVATE_DEFINITION_BITSCANFORWARD() _BitScanForward64 # endif # include <intrin.h> # pragma intrinsic(ROBIN_HOOD(BITSCANFORWARD)) # define ROBIN_HOOD_COUNT_TRAILING_ZEROES(x) \ [](size_t mask) noexcept -> int { \ unsigned long index; \ return ROBIN_HOOD(BITSCANFORWARD)(&index, mask) ? static_cast<int>(index) \ : ROBIN_HOOD(BITNESS); \ }(x) # else # if ROBIN_HOOD(BITNESS) == 32 # define ROBIN_HOOD_PRIVATE_DEFINITION_CTZ() __builtin_ctzl # define ROBIN_HOOD_PRIVATE_DEFINITION_CLZ() __builtin_clzl # else # define ROBIN_HOOD_PRIVATE_DEFINITION_CTZ() __builtin_ctzll # define ROBIN_HOOD_PRIVATE_DEFINITION_CLZ() __builtin_clzll # endif # define ROBIN_HOOD_COUNT_LEADING_ZEROES(x) ((x) ? ROBIN_HOOD(CLZ)(x) : ROBIN_HOOD(BITNESS)) # define ROBIN_HOOD_COUNT_TRAILING_ZEROES(x) ((x) ? ROBIN_HOOD(CTZ)(x) : ROBIN_HOOD(BITNESS)) # endif #endif // fallthrough #ifndef __has_cpp_attribute // For backwards compatibility # define __has_cpp_attribute(x) 0 #endif #if __has_cpp_attribute(clang::fallthrough) # define ROBIN_HOOD_PRIVATE_DEFINITION_FALLTHROUGH() [[clang::fallthrough]] #elif __has_cpp_attribute(gnu::fallthrough) # define ROBIN_HOOD_PRIVATE_DEFINITION_FALLTHROUGH() [[gnu::fallthrough]] #else # define ROBIN_HOOD_PRIVATE_DEFINITION_FALLTHROUGH() #endif // likely/unlikely #ifdef _MSC_VER # define ROBIN_HOOD_LIKELY(condition) condition # define ROBIN_HOOD_UNLIKELY(condition) condition #else # define ROBIN_HOOD_LIKELY(condition) __builtin_expect(condition, 1) # define ROBIN_HOOD_UNLIKELY(condition) __builtin_expect(condition, 0) #endif // detect if native wchar_t type is availiable in MSVC #ifdef _MSC_VER # ifdef _NATIVE_WCHAR_T_DEFINED # define ROBIN_HOOD_PRIVATE_DEFINITION_HAS_NATIVE_WCHART() 1 # else # define ROBIN_HOOD_PRIVATE_DEFINITION_HAS_NATIVE_WCHART() 0 # endif #else # define ROBIN_HOOD_PRIVATE_DEFINITION_HAS_NATIVE_WCHART() 1 #endif // detect if MSVC supports the pair(std::piecewise_construct_t,...) consructor being constexpr #ifdef _MSC_VER # if _MSC_VER <= 1900 # define ROBIN_HOOD_PRIVATE_DEFINITION_BROKEN_CONSTEXPR() 1 # else # define ROBIN_HOOD_PRIVATE_DEFINITION_BROKEN_CONSTEXPR() 0 # endif #else # define ROBIN_HOOD_PRIVATE_DEFINITION_BROKEN_CONSTEXPR() 0 #endif // wcurtcurtcurtorkaround missing "is_trivially_copyable" in g++ < 5.0 // See https://stackoverflow.com/a/31798726/48181 #if defined(__GNUC__) && __GNUC__ < 5 && !defined(__clang__) # define ROBIN_HOOD_IS_TRIVIALLY_COPYABLE(...) __has_trivial_copy(__VA_ARGS__) #else # define ROBIN_HOOD_IS_TRIVIALLY_COPYABLE(...) std::is_trivially_copyable<__VA_ARGS__>::value #endif // helpers for C++ versions, see https://gcc.gnu.org/onlinedocs/cpp/Standard-Predefined-Macros.html #define ROBIN_HOOD_PRIVATE_DEFINITION_CXX() __cplusplus #define ROBIN_HOOD_PRIVATE_DEFINITION_CXX98() 199711L #define ROBIN_HOOD_PRIVATE_DEFINITION_CXX11() 201103L #define ROBIN_HOOD_PRIVATE_DEFINITION_CXX14() 201402L #define ROBIN_HOOD_PRIVATE_DEFINITION_CXX17() 201703L #if ROBIN_HOOD(CXX) >= ROBIN_HOOD(CXX17) # define ROBIN_HOOD_PRIVATE_DEFINITION_NODISCARD() [[nodiscard]] #else # define ROBIN_HOOD_PRIVATE_DEFINITION_NODISCARD() #endif namespace robin_hood { #if ROBIN_HOOD(CXX) >= ROBIN_HOOD(CXX14) # define ROBIN_HOOD_STD std #else // c++11 compatibility layer namespace ROBIN_HOOD_STD { template <class T> struct alignment_of : std::integral_constant<std::size_t, alignof(typename std::remove_all_extents<T>::type)> {}; template <class T, T... Ints> class integer_sequence { public: using value_type = T; static_assert(std::is_integral<value_type>::value, "not integral type"); static constexpr std::size_t size() noexcept { return sizeof...(Ints); } }; template <std::size_t... Inds> using index_sequence = integer_sequence<std::size_t, Inds...>; namespace detail_ { template <class T, T Begin, T End, bool> struct IntSeqImpl { using TValue = T; static_assert(std::is_integral<TValue>::value, "not integral type"); static_assert(Begin >= 0 && Begin < End, "unexpected argument (Begin<0 || Begin<=End)"); template <class, class> struct IntSeqCombiner; template <TValue... Inds0, TValue... Inds1> struct IntSeqCombiner<integer_sequence<TValue, Inds0...>, integer_sequence<TValue, Inds1...>> { using TResult = integer_sequence<TValue, Inds0..., Inds1...>; }; using TResult = typename IntSeqCombiner<typename IntSeqImpl<TValue, Begin, Begin + (End - Begin) / 2, (End - Begin) / 2 == 1>::TResult, typename IntSeqImpl<TValue, Begin + (End - Begin) / 2, End, (End - Begin + 1) / 2 == 1>::TResult>::TResult; }; template <class T, T Begin> struct IntSeqImpl<T, Begin, Begin, false> { using TValue = T; static_assert(std::is_integral<TValue>::value, "not integral type"); static_assert(Begin >= 0, "unexpected argument (Begin<0)"); using TResult = integer_sequence<TValue>; }; template <class T, T Begin, T End> struct IntSeqImpl<T, Begin, End, true> { using TValue = T; static_assert(std::is_integral<TValue>::value, "not integral type"); static_assert(Begin >= 0, "unexpected argument (Begin<0)"); using TResult = integer_sequence<TValue, Begin>; }; } // namespace detail_ template <class T, T N> using make_integer_sequence = typename detail_::IntSeqImpl<T, 0, N, (N - 0) == 1>::TResult; template <std::size_t N> using make_index_sequence = make_integer_sequence<std::size_t, N>; template <class... T> using index_sequence_for = make_index_sequence<sizeof...(T)>; } // namespace ROBIN_HOOD_STD #endif namespace detail { // make sure we static_cast to the correct type for hash_int #if ROBIN_HOOD(BITNESS) == 64 using SizeT = uint64_t; #else using SizeT = uint32_t; #endif template <typename T> T rotr(T x, unsigned k) { return (x >> k) | (x << (8U * sizeof(T) - k)); } // This cast gets rid of warnings like "cast from 'uint8_t*' {aka 'unsigned char*'} to // 'uint64_t*' {aka 'long unsigned int*'} increases required alignment of target type". Use with // care! template <typename T> inline T reinterpret_cast_no_cast_align_warning(void* ptr) noexcept { return reinterpret_cast<T>(ptr); } template <typename T> inline T reinterpret_cast_no_cast_align_warning(void const* ptr) noexcept { return reinterpret_cast<T>(ptr); } // make sure this is not inlined as it is slow and dramatically enlarges code, thus making other // inlinings more difficult. Throws are also generally the slow path. template <typename E, typename... Args> [[noreturn]] ROBIN_HOOD(NOINLINE) #if ROBIN_HOOD(HAS_EXCEPTIONS) void doThrow(Args&&... args) { // NOLINTNEXTLINE(cppcoreguidelines-pro-bounds-array-to-pointer-decay) throw E(std::forward<Args>(args)...); } #else void doThrow(Args&&... ROBIN_HOOD_UNUSED(args) /*unused*/) { abort(); } #endif template <typename E, typename T, typename... Args> T* assertNotNull(T* t, Args&&... args) { if (ROBIN_HOOD_UNLIKELY(nullptr == t)) { doThrow<E>(std::forward<Args>(args)...); } return t; } template <typename T> inline T unaligned_load(void const* ptr) noexcept { // using memcpy so we don't get into unaligned load problems. // compiler should optimize this very well anyways. T t; std::memcpy(&t, ptr, sizeof(T)); return t; } // Allocates bulks of memory for objects of type T. This deallocates the memory in the destructor, // and keeps a linked list of the allocated memory around. Overhead per allocation is the size of a // pointer. template <typename T, size_t MinNumAllocs = 4, size_t MaxNumAllocs = 256> class BulkPoolAllocator { public: BulkPoolAllocator() noexcept = default; // does not copy anything, just creates a new allocator. BulkPoolAllocator(const BulkPoolAllocator& ROBIN_HOOD_UNUSED(o) /*unused*/) noexcept : mHead(nullptr) , mListForFree(nullptr) {} BulkPoolAllocator(BulkPoolAllocator&& o) noexcept : mHead(o.mHead) , mListForFree(o.mListForFree) { o.mListForFree = nullptr; o.mHead = nullptr; } BulkPoolAllocator& operator=(BulkPoolAllocator&& o) noexcept { reset(); mHead = o.mHead; mListForFree = o.mListForFree; o.mListForFree = nullptr; o.mHead = nullptr; return *this; } BulkPoolAllocator& // NOLINTNEXTLINE(bugprone-unhandled-self-assignment,cert-oop54-cpp) operator=(const BulkPoolAllocator& ROBIN_HOOD_UNUSED(o) /*unused*/) noexcept { // does not do anything return *this; } ~BulkPoolAllocator() noexcept { reset(); } // Deallocates all allocated memory. void reset() noexcept { while (mListForFree) { T* tmp = *mListForFree; ROBIN_HOOD_LOG("std::free") std::free(mListForFree); mListForFree = reinterpret_cast_no_cast_align_warning<T**>(tmp); } mHead = nullptr; } // allocates, but does NOT initialize. Use in-place new constructor, e.g. // T* obj = pool.allocate(); // ::new (static_cast<void*>(obj)) T(); T* allocate() { T* tmp = mHead; if (!tmp) { tmp = performAllocation(); } mHead = *reinterpret_cast_no_cast_align_warning<T**>(tmp); return tmp; } // does not actually deallocate but puts it in store. // make sure you have already called the destructor! e.g. with // obj->~T(); // pool.deallocate(obj); void deallocate(T* obj) noexcept { *reinterpret_cast_no_cast_align_warning<T**>(obj) = mHead; mHead = obj; } // Adds an already allocated block of memory to the allocator. This allocator is from now on // responsible for freeing the data (with free()). If the provided data is not large enough to // make use of, it is immediately freed. Otherwise it is reused and freed in the destructor. void addOrFree(void* ptr, const size_t numBytes) noexcept { // calculate number of available elements in ptr if (numBytes < ALIGNMENT + ALIGNED_SIZE) { // not enough data for at least one element. Free and return. ROBIN_HOOD_LOG("std::free") std::free(ptr); } else { ROBIN_HOOD_LOG("add to buffer") add(ptr, numBytes); } } void swap(BulkPoolAllocator<T, MinNumAllocs, MaxNumAllocs>& other) noexcept { using std::swap; swap(mHead, other.mHead); swap(mListForFree, other.mListForFree); } private: // iterates the list of allocated memory to calculate how many to alloc next. // Recalculating this each time saves us a size_t member. // This ignores the fact that memory blocks might have been added manually with addOrFree. In // practice, this should not matter much. ROBIN_HOOD(NODISCARD) size_t calcNumElementsToAlloc() const noexcept { auto tmp = mListForFree; size_t numAllocs = MinNumAllocs; while (numAllocs * 2 <= MaxNumAllocs && tmp) { auto x = reinterpret_cast<T***>(tmp); tmp = *x; numAllocs *= 2; } return numAllocs; } // WARNING: Underflow if numBytes < ALIGNMENT! This is guarded in addOrFree(). void add(void* ptr, const size_t numBytes) noexcept { const size_t numElements = (numBytes - ALIGNMENT) / ALIGNED_SIZE; auto data = reinterpret_cast<T**>(ptr); // link free list auto x = reinterpret_cast<T***>(data); *x = mListForFree; mListForFree = data; // create linked list for newly allocated data auto* const headT = reinterpret_cast_no_cast_align_warning<T*>(reinterpret_cast<char*>(ptr) + ALIGNMENT); auto* const head = reinterpret_cast<char*>(headT); // Visual Studio compiler automatically unrolls this loop, which is pretty cool for (size_t i = 0; i < numElements; ++i) { *reinterpret_cast_no_cast_align_warning<char**>(head + i * ALIGNED_SIZE) = head + (i + 1) * ALIGNED_SIZE; } // last one points to 0 *reinterpret_cast_no_cast_align_warning<T**>(head + (numElements - 1) * ALIGNED_SIZE) = mHead; mHead = headT; } // Called when no memory is available (mHead == 0). // Don't inline this slow path. ROBIN_HOOD(NOINLINE) T* performAllocation() { size_t const numElementsToAlloc = calcNumElementsToAlloc(); // alloc new memory: [prev |T, T, ... T] size_t const bytes = ALIGNMENT + ALIGNED_SIZE * numElementsToAlloc; ROBIN_HOOD_LOG("std::malloc " << bytes << " = " << ALIGNMENT << " + " << ALIGNED_SIZE << " * " << numElementsToAlloc) add(assertNotNull<std::bad_alloc>(std::malloc(bytes)), bytes); return mHead; } // enforce byte alignment of the T's #if ROBIN_HOOD(CXX) >= ROBIN_HOOD(CXX14) static constexpr size_t ALIGNMENT = (std::max)(std::alignment_of<T>::value, std::alignment_of<T*>::value); #else static const size_t ALIGNMENT = (ROBIN_HOOD_STD::alignment_of<T>::value > ROBIN_HOOD_STD::alignment_of<T*>::value) ? ROBIN_HOOD_STD::alignment_of<T>::value : +ROBIN_HOOD_STD::alignment_of<T*>::value; // the + is for walkarround #endif static constexpr size_t ALIGNED_SIZE = ((sizeof(T) - 1) / ALIGNMENT + 1) * ALIGNMENT; static_assert(MinNumAllocs >= 1, "MinNumAllocs"); static_assert(MaxNumAllocs >= MinNumAllocs, "MaxNumAllocs"); static_assert(ALIGNED_SIZE >= sizeof(T*), "ALIGNED_SIZE"); static_assert(0 == (ALIGNED_SIZE % sizeof(T*)), "ALIGNED_SIZE mod"); static_assert(ALIGNMENT >= sizeof(T*), "ALIGNMENT"); T* mHead{nullptr}; T** mListForFree{nullptr}; }; template <typename T, size_t MinSize, size_t MaxSize, bool IsFlat> struct NodeAllocator; // dummy allocator that does nothing template <typename T, size_t MinSize, size_t MaxSize> struct NodeAllocator<T, MinSize, MaxSize, true> { // we are not using the data, so just free it. void addOrFree(void* ptr, size_t ROBIN_HOOD_UNUSED(numBytes) /*unused*/) noexcept { ROBIN_HOOD_LOG("std::free") std::free(ptr); } }; template <typename T, size_t MinSize, size_t MaxSize> struct NodeAllocator<T, MinSize, MaxSize, false> : public BulkPoolAllocator<T, MinSize, MaxSize> {}; // c++14 doesn't have is_nothrow_swappable, and clang++ 6.0.1 doesn't like it either, so I'm making // my own here. namespace swappable { #if ROBIN_HOOD(CXX) < ROBIN_HOOD(CXX17) using std::swap; template <typename T> struct nothrow { static const bool value = noexcept(swap(std::declval<T&>(), std::declval<T&>())); }; #else template <typename T> struct nothrow { static const bool value = std::is_nothrow_swappable<T>::value; }; #endif } // namespace swappable } // namespace detail struct is_transparent_tag {}; // A custom pair implementation is used in the map because std::pair is not is_trivially_copyable, // which means it would not be allowed to be used in std::memcpy. This struct is copyable, which is // also tested. template <typename T1, typename T2> struct pair { using first_type = T1; using second_type = T2; template <typename U1 = T1, typename U2 = T2, typename = typename std::enable_if<std::is_default_constructible<U1>::value && std::is_default_constructible<U2>::value>::type> constexpr pair() noexcept(noexcept(U1()) && noexcept(U2())) : first() , second() {} // pair constructors are explicit so we don't accidentally call this ctor when we don't have to. explicit constexpr pair(std::pair<T1, T2> const& o) noexcept( noexcept(T1(std::declval<T1 const&>())) && noexcept(T2(std::declval<T2 const&>()))) : first(o.first) , second(o.second) {} // pair constructors are explicit so we don't accidentally call this ctor when we don't have to. explicit constexpr pair(std::pair<T1, T2>&& o) noexcept(noexcept( T1(std::move(std::declval<T1&&>()))) && noexcept(T2(std::move(std::declval<T2&&>())))) : first(std::move(o.first)) , second(std::move(o.second)) {} constexpr pair(T1&& a, T2&& b) noexcept(noexcept( T1(std::move(std::declval<T1&&>()))) && noexcept(T2(std::move(std::declval<T2&&>())))) : first(std::move(a)) , second(std::move(b)) {} template <typename U1, typename U2> constexpr pair(U1&& a, U2&& b) noexcept(noexcept(T1(std::forward<U1>( std::declval<U1&&>()))) && noexcept(T2(std::forward<U2>(std::declval<U2&&>())))) : first(std::forward<U1>(a)) , second(std::forward<U2>(b)) {} template <typename... U1, typename... U2> // MSVC 2015 produces error "C2476: ‘constexpr’ constructor does not initialize all members" // if this constructor is constexpr #if !ROBIN_HOOD(BROKEN_CONSTEXPR) constexpr #endif pair(std::piecewise_construct_t /*unused*/, std::tuple<U1...> a, std::tuple<U2...> b) noexcept(noexcept(pair(std::declval<std::tuple<U1...>&>(), std::declval<std::tuple<U2...>&>(), ROBIN_HOOD_STD::index_sequence_for<U1...>(), ROBIN_HOOD_STD::index_sequence_for<U2...>()))) : pair(a, b, ROBIN_HOOD_STD::index_sequence_for<U1...>(), ROBIN_HOOD_STD::index_sequence_for<U2...>()) { } // constructor called from the std::piecewise_construct_t ctor template <typename... U1, size_t... I1, typename... U2, size_t... I2> pair(std::tuple<U1...>& a, std::tuple<U2...>& b, ROBIN_HOOD_STD::index_sequence<I1...> /*unused*/, ROBIN_HOOD_STD::index_sequence<I2...> /*unused*/) noexcept( noexcept(T1(std::forward<U1>(std::get<I1>( std::declval<std::tuple< U1...>&>()))...)) && noexcept(T2(std:: forward<U2>(std::get<I2>( std::declval<std::tuple<U2...>&>()))...))) : first(std::forward<U1>(std::get<I1>(a))...) , second(std::forward<U2>(std::get<I2>(b))...) { // make visual studio compiler happy about warning about unused a & b. // Visual studio's pair implementation disables warning 4100. (void)a; (void)b; } void swap(pair<T1, T2>& o) noexcept((detail::swappable::nothrow<T1>::value) && (detail::swappable::nothrow<T2>::value)) { using std::swap; swap(first, o.first); swap(second, o.second); } T1 first; // NOLINT(misc-non-private-member-variables-in-classes) T2 second; // NOLINT(misc-non-private-member-variables-in-classes) }; template <typename A, typename B> inline void swap(pair<A, B>& a, pair<A, B>& b) noexcept( noexcept(std::declval<pair<A, B>&>().swap(std::declval<pair<A, B>&>()))) { a.swap(b); } template <typename A, typename B> inline constexpr bool operator==(pair<A, B> const& x, pair<A, B> const& y) { return (x.first == y.first) && (x.second == y.second); } template <typename A, typename B> inline constexpr bool operator!=(pair<A, B> const& x, pair<A, B> const& y) { return !(x == y); } template <typename A, typename B> inline constexpr bool operator<(pair<A, B> const& x, pair<A, B> const& y) noexcept(noexcept( std::declval<A const&>() < std::declval<A const&>()) && noexcept(std::declval<B const&>() < std::declval<B const&>())) { return x.first < y.first || (!(y.first < x.first) && x.second < y.second); } template <typename A, typename B> inline constexpr bool operator>(pair<A, B> const& x, pair<A, B> const& y) { return y < x; } template <typename A, typename B> inline constexpr bool operator<=(pair<A, B> const& x, pair<A, B> const& y) { return !(x > y); } template <typename A, typename B> inline constexpr bool operator>=(pair<A, B> const& x, pair<A, B> const& y) { return !(x < y); } inline size_t hash_bytes(void const* ptr, size_t len) noexcept { static constexpr uint64_t m = UINT64_C(0xc6a4a7935bd1e995); static constexpr uint64_t seed = UINT64_C(0xe17a1465); static constexpr unsigned int r = 47; auto const* const data64 = static_cast<uint64_t const*>(ptr); uint64_t h = seed ^ (len * m); size_t const n_blocks = len / 8; for (size_t i = 0; i < n_blocks; ++i) { auto k = detail::unaligned_load<uint64_t>(data64 + i); k *= m; k ^= k >> r; k *= m; h ^= k; h *= m; } auto const* const data8 = reinterpret_cast<uint8_t const*>(data64 + n_blocks); switch (len & 7U) { case 7: h ^= static_cast<uint64_t>(data8[6]) << 48U; ROBIN_HOOD(FALLTHROUGH); // FALLTHROUGH case 6: h ^= static_cast<uint64_t>(data8[5]) << 40U; ROBIN_HOOD(FALLTHROUGH); // FALLTHROUGH case 5: h ^= static_cast<uint64_t>(data8[4]) << 32U; ROBIN_HOOD(FALLTHROUGH); // FALLTHROUGH case 4: h ^= static_cast<uint64_t>(data8[3]) << 24U; ROBIN_HOOD(FALLTHROUGH); // FALLTHROUGH case 3: h ^= static_cast<uint64_t>(data8[2]) << 16U; ROBIN_HOOD(FALLTHROUGH); // FALLTHROUGH case 2: h ^= static_cast<uint64_t>(data8[1]) << 8U; ROBIN_HOOD(FALLTHROUGH); // FALLTHROUGH case 1: h ^= static_cast<uint64_t>(data8[0]); h *= m; ROBIN_HOOD(FALLTHROUGH); // FALLTHROUGH default: break; } h ^= h >> r; // not doing the final step here, because this will be done by keyToIdx anyways // h *= m; // h ^= h >> r; return static_cast<size_t>(h); } inline size_t hash_int(uint64_t x) noexcept { // tried lots of different hashes, let's stick with murmurhash3. It's simple, fast, well tested, // and doesn't need any special 128bit operations. x ^= x >> 33U; x *= UINT64_C(0xff51afd7ed558ccd); x ^= x >> 33U; // not doing the final step here, because this will be done by keyToIdx anyways // x *= UINT64_C(0xc4ceb9fe1a85ec53); // x ^= x >> 33U; return static_cast<size_t>(x); } // A thin wrapper around std::hash, performing an additional simple mixing step of the result. template <typename T, typename Enable = void> struct hash : public std::hash<T> { size_t operator()(T const& obj) const noexcept(noexcept(std::declval<std::hash<T>>().operator()(std::declval<T const&>()))) { // call base hash auto result = std::hash<T>::operator()(obj); // return mixed of that, to be save against identity has return hash_int(static_cast<detail::SizeT>(result)); } }; template <typename CharT> struct hash<std::basic_string<CharT>> { size_t operator()(std::basic_string<CharT> const& str) const noexcept { return hash_bytes(str.data(), sizeof(CharT) * str.size()); } }; #if ROBIN_HOOD(CXX) >= ROBIN_HOOD(CXX17) template <typename CharT> struct hash<std::basic_string_view<CharT>> { size_t operator()(std::basic_string_view<CharT> const& sv) const noexcept { return hash_bytes(sv.data(), sizeof(CharT) * sv.size()); } }; #endif template <class T> struct hash<T*> { size_t operator()(T* ptr) const noexcept { return hash_int(reinterpret_cast<detail::SizeT>(ptr)); } }; template <class T> struct hash<std::unique_ptr<T>> { size_t operator()(std::unique_ptr<T> const& ptr) const noexcept { return hash_int(reinterpret_cast<detail::SizeT>(ptr.get())); } }; template <class T> struct hash<std::shared_ptr<T>> { size_t operator()(std::shared_ptr<T> const& ptr) const noexcept { return hash_int(reinterpret_cast<detail::SizeT>(ptr.get())); } }; template <typename Enum> struct hash<Enum, typename std::enable_if<std::is_enum<Enum>::value>::type> { size_t operator()(Enum e) const noexcept { using Underlying = typename std::underlying_type<Enum>::type; return hash<Underlying>{}(static_cast<Underlying>(e)); } }; #define ROBIN_HOOD_HASH_INT(T) \ template <> \ struct hash<T> { \ size_t operator()(T const& obj) const noexcept { \ return hash_int(static_cast<uint64_t>(obj)); \ } \ } #if defined(__GNUC__) && !defined(__clang__) # pragma GCC diagnostic push # pragma GCC diagnostic ignored "-Wuseless-cast" #endif // see https://en.cppreference.com/w/cpp/utility/hash ROBIN_HOOD_HASH_INT(bool); ROBIN_HOOD_HASH_INT(char); ROBIN_HOOD_HASH_INT(signed char); ROBIN_HOOD_HASH_INT(unsigned char); ROBIN_HOOD_HASH_INT(char16_t); ROBIN_HOOD_HASH_INT(char32_t); #if ROBIN_HOOD(HAS_NATIVE_WCHART) ROBIN_HOOD_HASH_INT(wchar_t); #endif ROBIN_HOOD_HASH_INT(short); ROBIN_HOOD_HASH_INT(unsigned short); ROBIN_HOOD_HASH_INT(int); ROBIN_HOOD_HASH_INT(unsigned int); ROBIN_HOOD_HASH_INT(long); ROBIN_HOOD_HASH_INT(long long); ROBIN_HOOD_HASH_INT(unsigned long); ROBIN_HOOD_HASH_INT(unsigned long long); #if defined(__GNUC__) && !defined(__clang__) # pragma GCC diagnostic pop #endif namespace detail { template <typename T> struct void_type { using type = void; }; template <typename T, typename = void> struct has_is_transparent : public std::false_type {}; template <typename T> struct has_is_transparent<T, typename void_type<typename T::is_transparent>::type> : public std::true_type {}; // using wrapper classes for hash and key_equal prevents the diamond problem when the same type // is used. see https://stackoverflow.com/a/28771920/48181 template <typename T> struct WrapHash : public T { WrapHash() = default; explicit WrapHash(T const& o) noexcept(noexcept(T(std::declval<T const&>()))) : T(o) {} }; template <typename T> struct WrapKeyEqual : public T { WrapKeyEqual() = default; explicit WrapKeyEqual(T const& o) noexcept(noexcept(T(std::declval<T const&>()))) : T(o) {} }; // A highly optimized hashmap implementation, using the Robin Hood algorithm. // // In most cases, this map should be usable as a drop-in replacement for std::unordered_map, but // be about 2x faster in most cases and require much less allocations. // // This implementation uses the following memory layout: // // [Node, Node, ... Node | info, info, ... infoSentinel ] // // * Node: either a DataNode that directly has the std::pair<key, val> as member, // or a DataNode with a pointer to std::pair<key,val>. Which DataNode representation to use // depends on how fast the swap() operation is. Heuristically, this is automatically choosen // based on sizeof(). there are always 2^n Nodes. // // * info: Each Node in the map has a corresponding info byte, so there are 2^n info bytes. // Each byte is initialized to 0, meaning the corresponding Node is empty. Set to 1 means the // corresponding node contains data. Set to 2 means the corresponding Node is filled, but it // actually belongs to the previous position and was pushed out because that place is already // taken. // // * infoSentinel: Sentinel byte set to 1, so that iterator's ++ can stop at end() without the // need for a idx variable. // // According to STL, order of templates has effect on throughput. That's why I've moved the // boolean to the front. // https://www.reddit.com/r/cpp/comments/ahp6iu/compile_time_binary_size_reductions_and_cs_future/eeguck4/ template <bool IsFlat, size_t MaxLoadFactor100, typename Key, typename T, typename Hash, typename KeyEqual> class Table : public WrapHash<Hash>, public WrapKeyEqual<KeyEqual>, detail::NodeAllocator< typename std::conditional< std::is_void<T>::value, Key, robin_hood::pair<typename std::conditional<IsFlat, Key, Key const>::type, T>>::type, 4, 16384, IsFlat> { public: static constexpr bool is_flat = IsFlat; static constexpr bool is_map = !std::is_void<T>::value; static constexpr bool is_set = !is_map; static constexpr bool is_transparent = has_is_transparent<Hash>::value && has_is_transparent<KeyEqual>::value; using key_type = Key; using mapped_type = T; using value_type = typename std::conditional< is_set, Key, robin_hood::pair<typename std::conditional<is_flat, Key, Key const>::type, T>>::type; using size_type = size_t; using hasher = Hash; using key_equal = KeyEqual; using Self = Table<IsFlat, MaxLoadFactor100, key_type, mapped_type, hasher, key_equal>; private: static_assert(MaxLoadFactor100 > 10 && MaxLoadFactor100 < 100, "MaxLoadFactor100 needs to be >10 && < 100"); using WHash = WrapHash<Hash>; using WKeyEqual = WrapKeyEqual<KeyEqual>; // configuration defaults // make sure we have 8 elements, needed to quickly rehash mInfo static constexpr size_t InitialNumElements = sizeof(uint64_t); static constexpr uint32_t InitialInfoNumBits = 5; static constexpr uint8_t InitialInfoInc = 1U << InitialInfoNumBits; static constexpr size_t InfoMask = InitialInfoInc - 1U; static constexpr uint8_t InitialInfoHashShift = 0; using DataPool = detail::NodeAllocator<value_type, 4, 16384, IsFlat>; // type needs to be wider than uint8_t. using InfoType = uint32_t; // DataNode //////////////////////////////////////////////////////// // Primary template for the data node. We have special implementations for small and big // objects. For large objects it is assumed that swap() is fairly slow, so we allocate these // on the heap so swap merely swaps a pointer. template <typename M, bool> class DataNode {}; // Small: just allocate on the stack. template <typename M> class DataNode<M, true> final { public: template <typename... Args> explicit DataNode(M& ROBIN_HOOD_UNUSED(map) /*unused*/, Args&&... args) noexcept( noexcept(value_type(std::forward<Args>(args)...))) : mData(std::forward<Args>(args)...) {} DataNode(M& ROBIN_HOOD_UNUSED(map) /*unused*/, DataNode<M, true>&& n) noexcept( std::is_nothrow_move_constructible<value_type>::value) : mData(std::move(n.mData)) {} // doesn't do anything void destroy(M& ROBIN_HOOD_UNUSED(map) /*unused*/) noexcept {} void destroyDoNotDeallocate() noexcept {} value_type const* operator->() const noexcept { return &mData; } value_type* operator->() noexcept { return &mData; } const value_type& operator*() const noexcept { return mData; } value_type& operator*() noexcept { return mData; } template <typename VT = value_type> ROBIN_HOOD(NODISCARD) typename std::enable_if<is_map, typename VT::first_type&>::type getFirst() noexcept { return mData.first; } template <typename VT = value_type> ROBIN_HOOD(NODISCARD) typename std::enable_if<is_set, VT&>::type getFirst() noexcept { return mData; } template <typename VT = value_type> ROBIN_HOOD(NODISCARD) typename std::enable_if<is_map, typename VT::first_type const&>::type getFirst() const noexcept { return mData.first; } template <typename VT = value_type> ROBIN_HOOD(NODISCARD) typename std::enable_if<is_set, VT const&>::type getFirst() const noexcept { return mData; } template <typename MT = mapped_type> ROBIN_HOOD(NODISCARD) typename std::enable_if<is_map, MT&>::type getSecond() noexcept { return mData.second; } template <typename MT = mapped_type> ROBIN_HOOD(NODISCARD) typename std::enable_if<is_set, MT const&>::type getSecond() const noexcept { return mData.second; } void swap(DataNode<M, true>& o) noexcept( noexcept(std::declval<value_type>().swap(std::declval<value_type>()))) { mData.swap(o.mData); } private: value_type mData; }; // big object: allocate on heap. template <typename M> class DataNode<M, false> { public: template <typename... Args> explicit DataNode(M& map, Args&&... args) : mData(map.allocate()) { ::new (static_cast<void*>(mData)) value_type(std::forward<Args>(args)...); } DataNode(M& ROBIN_HOOD_UNUSED(map) /*unused*/, DataNode<M, false>&& n) noexcept : mData(std::move(n.mData)) {} void destroy(M& map) noexcept { // don't deallocate, just put it into list of datapool. mData->~value_type(); map.deallocate(mData); } void destroyDoNotDeallocate() noexcept { mData->~value_type(); } value_type const* operator->() const noexcept { return mData; } value_type* operator->() noexcept { return mData; } const value_type& operator*() const { return *mData; } value_type& operator*() { return *mData; } template <typename VT = value_type> ROBIN_HOOD(NODISCARD) typename std::enable_if<is_map, typename VT::first_type&>::type getFirst() noexcept { return mData->first; } template <typename VT = value_type> ROBIN_HOOD(NODISCARD) typename std::enable_if<is_set, VT&>::type getFirst() noexcept { return *mData; } template <typename VT = value_type> ROBIN_HOOD(NODISCARD) typename std::enable_if<is_map, typename VT::first_type const&>::type getFirst() const noexcept { return mData->first; } template <typename VT = value_type> ROBIN_HOOD(NODISCARD) typename std::enable_if<is_set, VT const&>::type getFirst() const noexcept { return *mData; } template <typename MT = mapped_type> ROBIN_HOOD(NODISCARD) typename std::enable_if<is_map, MT&>::type getSecond() noexcept { return mData->second; } template <typename MT = mapped_type> ROBIN_HOOD(NODISCARD) typename std::enable_if<is_map, MT const&>::type getSecond() const noexcept { return mData->second; } void swap(DataNode<M, false>& o) noexcept { using std::swap; swap(mData, o.mData); } private: value_type* mData; }; using Node = DataNode<Self, IsFlat>; // helpers for insertKeyPrepareEmptySpot: extract first entry (only const required) ROBIN_HOOD(NODISCARD) key_type const& getFirstConst(Node const& n) const noexcept { return n.getFirst(); } // in case we have void mapped_type, we are not using a pair, thus we just route k through. // No need to disable this because it's just not used if not applicable. ROBIN_HOOD(NODISCARD) key_type const& getFirstConst(key_type const& k) const noexcept { return k; } // in case we have non-void mapped_type, we have a standard robin_hood::pair template <typename Q = mapped_type> ROBIN_HOOD(NODISCARD) typename std::enable_if<!std::is_void<Q>::value, key_type const&>::type getFirstConst(value_type const& vt) const noexcept { return vt.first; } // Cloner ////////////////////////////////////////////////////////// template <typename M, bool UseMemcpy> struct Cloner; // fast path: Just copy data, without allocating anything. template <typename M> struct Cloner<M, true> { void operator()(M const& source, M& target) const { auto const* const src = reinterpret_cast<char const*>(source.mKeyVals); auto* tgt = reinterpret_cast<char*>(target.mKeyVals); auto const numElementsWithBuffer = target.calcNumElementsWithBuffer(target.mMask + 1); std::copy(src, src + target.calcNumBytesTotal(numElementsWithBuffer), tgt); } }; template <typename M> struct Cloner<M, false> { void operator()(M const& s, M& t) const { auto const numElementsWithBuffer = t.calcNumElementsWithBuffer(t.mMask + 1); std::copy(s.mInfo, s.mInfo + t.calcNumBytesInfo(numElementsWithBuffer), t.mInfo); for (size_t i = 0; i < numElementsWithBuffer; ++i) { if (t.mInfo[i]) { ::new (static_cast<void*>(t.mKeyVals + i)) Node(t, *s.mKeyVals[i]); } } } }; // Destroyer /////////////////////////////////////////////////////// template <typename M, bool IsFlatAndTrivial> struct Destroyer {}; template <typename M> struct Destroyer<M, true> { void nodes(M& m) const noexcept { m.mNumElements = 0; } void nodesDoNotDeallocate(M& m) const noexcept { m.mNumElements = 0; } }; template <typename M> struct Destroyer<M, false> { void nodes(M& m) const noexcept { m.mNumElements = 0; // clear also resets mInfo to 0, that's sometimes not necessary. auto const numElementsWithBuffer = m.calcNumElementsWithBuffer(m.mMask + 1); for (size_t idx = 0; idx < numElementsWithBuffer; ++idx) { if (0 != m.mInfo[idx]) { Node& n = m.mKeyVals[idx]; n.destroy(m); n.~Node(); } } } void nodesDoNotDeallocate(M& m) const noexcept { m.mNumElements = 0; // clear also resets mInfo to 0, that's sometimes not necessary. auto const numElementsWithBuffer = m.calcNumElementsWithBuffer(m.mMask + 1); for (size_t idx = 0; idx < numElementsWithBuffer; ++idx) { if (0 != m.mInfo[idx]) { Node& n = m.mKeyVals[idx]; n.destroyDoNotDeallocate(); n.~Node(); } } } }; // Iter //////////////////////////////////////////////////////////// struct fast_forward_tag {}; // generic iterator for both const_iterator and iterator. template <bool IsConst> // NOLINTNEXTLINE(hicpp-special-member-functions,cppcoreguidelines-special-member-functions) class Iter { private: using NodePtr = typename std::conditional<IsConst, Node const*, Node*>::type; public: using difference_type = std::ptrdiff_t; using value_type = typename Self::value_type; using reference = typename std::conditional<IsConst, value_type const&, value_type&>::type; using pointer = typename std::conditional<IsConst, value_type const*, value_type*>::type; using iterator_category = std::forward_iterator_tag; // default constructed iterator can be compared to itself, but WON'T return true when // compared to end(). Iter() = default; // Rule of zero: nothing specified. The conversion constructor is only enabled for // iterator to const_iterator, so it doesn't accidentally work as a copy ctor. // Conversion constructor from iterator to const_iterator. template <bool OtherIsConst, typename = typename std::enable_if<IsConst && !OtherIsConst>::type> // NOLINTNEXTLINE(hicpp-explicit-conversions) Iter(Iter<OtherIsConst> const& other) noexcept : mKeyVals(other.mKeyVals) , mInfo(other.mInfo) {} Iter(NodePtr valPtr, uint8_t const* infoPtr) noexcept : mKeyVals(valPtr) , mInfo(infoPtr) {} Iter(NodePtr valPtr, uint8_t const* infoPtr, fast_forward_tag ROBIN_HOOD_UNUSED(tag) /*unused*/) noexcept : mKeyVals(valPtr) , mInfo(infoPtr) { fastForward(); } template <bool OtherIsConst, typename = typename std::enable_if<IsConst && !OtherIsConst>::type> Iter& operator=(Iter<OtherIsConst> const& other) noexcept { mKeyVals = other.mKeyVals; mInfo = other.mInfo; return *this; } // prefix increment. Undefined behavior if we are at end()! Iter& operator++() noexcept { mInfo++; mKeyVals++; fastForward(); return *this; } Iter operator++(int) noexcept { Iter tmp = *this; ++(*this); return tmp; } reference operator*() const { return **mKeyVals; } pointer operator->() const { return &**mKeyVals; } template <bool O> bool operator==(Iter<O> const& o) const noexcept { return mKeyVals == o.mKeyVals; } template <bool O> bool operator!=(Iter<O> const& o) const noexcept { return mKeyVals != o.mKeyVals; } private: // fast forward to the next non-free info byte // I've tried a few variants that don't depend on intrinsics, but unfortunately they are // quite a bit slower than this one. So I've reverted that change again. See map_benchmark. void fastForward() noexcept { size_t n = 0; while (0U == (n = detail::unaligned_load<size_t>(mInfo))) { mInfo += sizeof(size_t); mKeyVals += sizeof(size_t); } #if defined(ROBIN_HOOD_DISABLE_INTRINSICS) // we know for certain that within the next 8 bytes we'll find a non-zero one. if (ROBIN_HOOD_UNLIKELY(0U == detail::unaligned_load<uint32_t>(mInfo))) { mInfo += 4; mKeyVals += 4; } if (ROBIN_HOOD_UNLIKELY(0U == detail::unaligned_load<uint16_t>(mInfo))) { mInfo += 2; mKeyVals += 2; } if (ROBIN_HOOD_UNLIKELY(0U == *mInfo)) { mInfo += 1; mKeyVals += 1; } #else # if ROBIN_HOOD(LITTLE_ENDIAN) auto inc = ROBIN_HOOD_COUNT_TRAILING_ZEROES(n) / 8; # else auto inc = ROBIN_HOOD_COUNT_LEADING_ZEROES(n) / 8; # endif mInfo += inc; mKeyVals += inc; #endif } friend class Table<IsFlat, MaxLoadFactor100, key_type, mapped_type, hasher, key_equal>; NodePtr mKeyVals{nullptr}; uint8_t const* mInfo{nullptr}; }; //////////////////////////////////////////////////////////////////// // highly performance relevant code. // Lower bits are used for indexing into the array (2^n size) // The upper 1-5 bits need to be a reasonable good hash, to save comparisons. template <typename HashKey> void keyToIdx(HashKey&& key, size_t* idx, InfoType* info) const { // In addition to whatever hash is used, add another mul & shift so we get better hashing. // This serves as a bad hash prevention, if the given data is // badly mixed. auto h = static_cast<uint64_t>(WHash::operator()(key)); h *= mHashMultiplier; h ^= h >> 33U; // the lower InitialInfoNumBits are reserved for info. *info = mInfoInc + static_cast<InfoType>((h & InfoMask) >> mInfoHashShift); *idx = (static_cast<size_t>(h) >> InitialInfoNumBits) & mMask; } // forwards the index by one, wrapping around at the end void next(InfoType* info, size_t* idx) const noexcept { *idx = *idx + 1; *info += mInfoInc; } void nextWhileLess(InfoType* info, size_t* idx) const noexcept { // unrolling this by hand did not bring any speedups. while (*info < mInfo[*idx]) { next(info, idx); } } // Shift everything up by one element. Tries to move stuff around. void shiftUp(size_t startIdx, size_t const insertion_idx) noexcept(std::is_nothrow_move_assignable<Node>::value) { auto idx = startIdx; ::new (static_cast<void*>(mKeyVals + idx)) Node(std::move(mKeyVals[idx - 1])); while (--idx != insertion_idx) { mKeyVals[idx] = std::move(mKeyVals[idx - 1]); } idx = startIdx; while (idx != insertion_idx) { ROBIN_HOOD_COUNT(shiftUp) mInfo[idx] = static_cast<uint8_t>(mInfo[idx - 1] + mInfoInc); if (ROBIN_HOOD_UNLIKELY(mInfo[idx] + mInfoInc > 0xFF)) { mMaxNumElementsAllowed = 0; } --idx; } } void shiftDown(size_t idx) noexcept(std::is_nothrow_move_assignable<Node>::value) { // until we find one that is either empty or has zero offset. // TODO(martinus) we don't need to move everything, just the last one for the same // bucket. mKeyVals[idx].destroy(*this); // until we find one that is either empty or has zero offset. while (mInfo[idx + 1] >= 2 * mInfoInc) { ROBIN_HOOD_COUNT(shiftDown) mInfo[idx] = static_cast<uint8_t>(mInfo[idx + 1] - mInfoInc); mKeyVals[idx] = std::move(mKeyVals[idx + 1]); ++idx; } mInfo[idx] = 0; // don't destroy, we've moved it // mKeyVals[idx].destroy(*this); mKeyVals[idx].~Node(); } // copy of find(), except that it returns iterator instead of const_iterator. template <typename Other> ROBIN_HOOD(NODISCARD) size_t findIdx(Other const& key) const { size_t idx{}; InfoType info{}; keyToIdx(key, &idx, &info); do { // unrolling this twice gives a bit of a speedup. More unrolling did not help. if (info == mInfo[idx] && ROBIN_HOOD_LIKELY(WKeyEqual::operator()(key, mKeyVals[idx].getFirst()))) { return idx; } next(&info, &idx); if (info == mInfo[idx] && ROBIN_HOOD_LIKELY(WKeyEqual::operator()(key, mKeyVals[idx].getFirst()))) { return idx; } next(&info, &idx); } while (info <= mInfo[idx]); // nothing found! return mMask == 0 ? 0 : static_cast<size_t>(std::distance( mKeyVals, reinterpret_cast_no_cast_align_warning<Node*>(mInfo))); } void cloneData(const Table& o) { Cloner<Table, IsFlat && ROBIN_HOOD_IS_TRIVIALLY_COPYABLE(Node)>()(o, *this); } // inserts a keyval that is guaranteed to be new, e.g. when the hashmap is resized. // @return True on success, false if something went wrong void insert_move(Node&& keyval) { // we don't retry, fail if overflowing // don't need to check max num elements if (0 == mMaxNumElementsAllowed && !try_increase_info()) { throwOverflowError(); } size_t idx{}; InfoType info{}; keyToIdx(keyval.getFirst(), &idx, &info); // skip forward. Use <= because we are certain that the element is not there. while (info <= mInfo[idx]) { idx = idx + 1; info += mInfoInc; } // key not found, so we are now exactly where we want to insert it. auto const insertion_idx = idx; auto const insertion_info = static_cast<uint8_t>(info); if (ROBIN_HOOD_UNLIKELY(insertion_info + mInfoInc > 0xFF)) { mMaxNumElementsAllowed = 0; } // find an empty spot while (0 != mInfo[idx]) { next(&info, &idx); } auto& l = mKeyVals[insertion_idx]; if (idx == insertion_idx) { ::new (static_cast<void*>(&l)) Node(std::move(keyval)); } else { shiftUp(idx, insertion_idx); l = std::move(keyval); } // put at empty spot mInfo[insertion_idx] = insertion_info; ++mNumElements; } public: using iterator = Iter<false>; using const_iterator = Iter<true>; Table() noexcept(noexcept(Hash()) && noexcept(KeyEqual())) : WHash() , WKeyEqual() { ROBIN_HOOD_TRACE(this) } // Creates an empty hash map. Nothing is allocated yet, this happens at the first insert. // This tremendously speeds up ctor & dtor of a map that never receives an element. The // penalty is payed at the first insert, and not before. Lookup of this empty map works // because everybody points to DummyInfoByte::b. parameter bucket_count is dictated by the // standard, but we can ignore it. explicit Table( size_t ROBIN_HOOD_UNUSED(bucket_count) /*unused*/, const Hash& h = Hash{}, const KeyEqual& equal = KeyEqual{}) noexcept(noexcept(Hash(h)) && noexcept(KeyEqual(equal))) : WHash(h) , WKeyEqual(equal) { ROBIN_HOOD_TRACE(this) } template <typename Iter> Table(Iter first, Iter last, size_t ROBIN_HOOD_UNUSED(bucket_count) /*unused*/ = 0, const Hash& h = Hash{}, const KeyEqual& equal = KeyEqual{}) : WHash(h) , WKeyEqual(equal) { ROBIN_HOOD_TRACE(this) insert(first, last); } Table(std::initializer_list<value_type> initlist, size_t ROBIN_HOOD_UNUSED(bucket_count) /*unused*/ = 0, const Hash& h = Hash{}, const KeyEqual& equal = KeyEqual{}) : WHash(h) , WKeyEqual(equal) { ROBIN_HOOD_TRACE(this) insert(initlist.begin(), initlist.end()); } Table(Table&& o) noexcept : WHash(std::move(static_cast<WHash&>(o))) , WKeyEqual(std::move(static_cast<WKeyEqual&>(o))) , DataPool(std::move(static_cast<DataPool&>(o))) { ROBIN_HOOD_TRACE(this) if (o.mMask) { mHashMultiplier = std::move(o.mHashMultiplier); mKeyVals = std::move(o.mKeyVals); mInfo = std::move(o.mInfo); mNumElements = std::move(o.mNumElements); mMask = std::move(o.mMask); mMaxNumElementsAllowed = std::move(o.mMaxNumElementsAllowed); mInfoInc = std::move(o.mInfoInc); mInfoHashShift = std::move(o.mInfoHashShift); // set other's mask to 0 so its destructor won't do anything o.init(); } } Table& operator=(Table&& o) noexcept { ROBIN_HOOD_TRACE(this) if (&o != this) { if (o.mMask) { // only move stuff if the other map actually has some data destroy(); mHashMultiplier = std::move(o.mHashMultiplier); mKeyVals = std::move(o.mKeyVals); mInfo = std::move(o.mInfo); mNumElements = std::move(o.mNumElements); mMask = std::move(o.mMask); mMaxNumElementsAllowed = std::move(o.mMaxNumElementsAllowed); mInfoInc = std::move(o.mInfoInc); mInfoHashShift = std::move(o.mInfoHashShift); WHash::operator=(std::move(static_cast<WHash&>(o))); WKeyEqual::operator=(std::move(static_cast<WKeyEqual&>(o))); DataPool::operator=(std::move(static_cast<DataPool&>(o))); o.init(); } else { // nothing in the other map => just clear us. clear(); } } return *this; } Table(const Table& o) : WHash(static_cast<const WHash&>(o)) , WKeyEqual(static_cast<const WKeyEqual&>(o)) , DataPool(static_cast<const DataPool&>(o)) { ROBIN_HOOD_TRACE(this) if (!o.empty()) { // not empty: create an exact copy. it is also possible to just iterate through all // elements and insert them, but copying is probably faster. auto const numElementsWithBuffer = calcNumElementsWithBuffer(o.mMask + 1); auto const numBytesTotal = calcNumBytesTotal(numElementsWithBuffer); ROBIN_HOOD_LOG("std::malloc " << numBytesTotal << " = calcNumBytesTotal(" << numElementsWithBuffer << ")") mHashMultiplier = o.mHashMultiplier; mKeyVals = static_cast<Node*>( detail::assertNotNull<std::bad_alloc>(std::malloc(numBytesTotal))); // no need for calloc because clonData does memcpy mInfo = reinterpret_cast<uint8_t*>(mKeyVals + numElementsWithBuffer); mNumElements = o.mNumElements; mMask = o.mMask; mMaxNumElementsAllowed = o.mMaxNumElementsAllowed; mInfoInc = o.mInfoInc; mInfoHashShift = o.mInfoHashShift; cloneData(o); } } // Creates a copy of the given map. Copy constructor of each entry is used. // Not sure why clang-tidy thinks this doesn't handle self assignment, it does // NOLINTNEXTLINE(bugprone-unhandled-self-assignment,cert-oop54-cpp) Table& operator=(Table const& o) { ROBIN_HOOD_TRACE(this) if (&o == this) { // prevent assigning of itself return *this; } // we keep using the old allocator and not assign the new one, because we want to keep // the memory available. when it is the same size. if (o.empty()) { if (0 == mMask) { // nothing to do, we are empty too return *this; } // not empty: destroy what we have there // clear also resets mInfo to 0, that's sometimes not necessary. destroy(); init(); WHash::operator=(static_cast<const WHash&>(o)); WKeyEqual::operator=(static_cast<const WKeyEqual&>(o)); DataPool::operator=(static_cast<DataPool const&>(o)); return *this; } // clean up old stuff Destroyer<Self, IsFlat && std::is_trivially_destructible<Node>::value>{}.nodes(*this); if (mMask != o.mMask) { // no luck: we don't have the same array size allocated, so we need to realloc. if (0 != mMask) { // only deallocate if we actually have data! ROBIN_HOOD_LOG("std::free") std::free(mKeyVals); } auto const numElementsWithBuffer = calcNumElementsWithBuffer(o.mMask + 1); auto const numBytesTotal = calcNumBytesTotal(numElementsWithBuffer); ROBIN_HOOD_LOG("std::malloc " << numBytesTotal << " = calcNumBytesTotal(" << numElementsWithBuffer << ")") mKeyVals = static_cast<Node*>( detail::assertNotNull<std::bad_alloc>(std::malloc(numBytesTotal))); // no need for calloc here because cloneData performs a memcpy. mInfo = reinterpret_cast<uint8_t*>(mKeyVals + numElementsWithBuffer); // sentinel is set in cloneData } WHash::operator=(static_cast<const WHash&>(o)); WKeyEqual::operator=(static_cast<const WKeyEqual&>(o)); DataPool::operator=(static_cast<DataPool const&>(o)); mHashMultiplier = o.mHashMultiplier; mNumElements = o.mNumElements; mMask = o.mMask; mMaxNumElementsAllowed = o.mMaxNumElementsAllowed; mInfoInc = o.mInfoInc; mInfoHashShift = o.mInfoHashShift; cloneData(o); return *this; } // Swaps everything between the two maps. void swap(Table& o) { ROBIN_HOOD_TRACE(this) using std::swap; swap(o, *this); } // Clears all data, without resizing. void clear() { ROBIN_HOOD_TRACE(this) if (empty()) { // don't do anything! also important because we don't want to write to // DummyInfoByte::b, even though we would just write 0 to it. return; } Destroyer<Self, IsFlat && std::is_trivially_destructible<Node>::value>{}.nodes(*this); auto const numElementsWithBuffer = calcNumElementsWithBuffer(mMask + 1); // clear everything, then set the sentinel again uint8_t const z = 0; std::fill(mInfo, mInfo + calcNumBytesInfo(numElementsWithBuffer), z); mInfo[numElementsWithBuffer] = 1; mInfoInc = InitialInfoInc; mInfoHashShift = InitialInfoHashShift; } // Destroys the map and all it's contents. ~Table() { ROBIN_HOOD_TRACE(this) destroy(); } // Checks if both tables contain the same entries. Order is irrelevant. bool operator==(const Table& other) const { ROBIN_HOOD_TRACE(this) if (other.size() != size()) { return false; } for (auto const& otherEntry : other) { if (!has(otherEntry)) { return false; } } return true; } bool operator!=(const Table& other) const { ROBIN_HOOD_TRACE(this) return !operator==(other); } template <typename Q = mapped_type> typename std::enable_if<!std::is_void<Q>::value, Q&>::type operator[](const key_type& key) { ROBIN_HOOD_TRACE(this) auto idxAndState = insertKeyPrepareEmptySpot(key); switch (idxAndState.second) { case InsertionState::key_found: break; case InsertionState::new_node: ::new (static_cast<void*>(&mKeyVals[idxAndState.first])) Node(*this, std::piecewise_construct, std::forward_as_tuple(key), std::forward_as_tuple()); break; case InsertionState::overwrite_node: mKeyVals[idxAndState.first] = Node(*this, std::piecewise_construct, std::forward_as_tuple(key), std::forward_as_tuple()); break; case InsertionState::overflow_error: throwOverflowError(); } return mKeyVals[idxAndState.first].getSecond(); } template <typename Q = mapped_type> typename std::enable_if<!std::is_void<Q>::value, Q&>::type operator[](key_type&& key) { ROBIN_HOOD_TRACE(this) auto idxAndState = insertKeyPrepareEmptySpot(key); switch (idxAndState.second) { case InsertionState::key_found: break; case InsertionState::new_node: ::new (static_cast<void*>(&mKeyVals[idxAndState.first])) Node(*this, std::piecewise_construct, std::forward_as_tuple(std::move(key)), std::forward_as_tuple()); break; case InsertionState::overwrite_node: mKeyVals[idxAndState.first] = Node(*this, std::piecewise_construct, std::forward_as_tuple(std::move(key)), std::forward_as_tuple()); break; case InsertionState::overflow_error: throwOverflowError(); } return mKeyVals[idxAndState.first].getSecond(); } template <typename Iter> void insert(Iter first, Iter last) { for (; first != last; ++first) { // value_type ctor needed because this might be called with std::pair's insert(value_type(*first)); } } void insert(std::initializer_list<value_type> ilist) { for (auto&& vt : ilist) { insert(std::move(vt)); } } template <typename... Args> std::pair<iterator, bool> emplace(Args&&... args) { ROBIN_HOOD_TRACE(this) Node n{*this, std::forward<Args>(args)...}; auto idxAndState = insertKeyPrepareEmptySpot(getFirstConst(n)); switch (idxAndState.second) { case InsertionState::key_found: n.destroy(*this); break; case InsertionState::new_node: ::new (static_cast<void*>(&mKeyVals[idxAndState.first])) Node(*this, std::move(n)); break; case InsertionState::overwrite_node: mKeyVals[idxAndState.first] = std::move(n); break; case InsertionState::overflow_error: n.destroy(*this); throwOverflowError(); break; } return std::make_pair(iterator(mKeyVals + idxAndState.first, mInfo + idxAndState.first), InsertionState::key_found != idxAndState.second); } template <typename... Args> iterator emplace_hint(const_iterator position, Args&&... args) { (void)position; return emplace(std::forward<Args>(args)...).first; } template <typename... Args> std::pair<iterator, bool> try_emplace(const key_type& key, Args&&... args) { return try_emplace_impl(key, std::forward<Args>(args)...); } template <typename... Args> std::pair<iterator, bool> try_emplace(key_type&& key, Args&&... args) { return try_emplace_impl(std::move(key), std::forward<Args>(args)...); } template <typename... Args> iterator try_emplace(const_iterator hint, const key_type& key, Args&&... args) { (void)hint; return try_emplace_impl(key, std::forward<Args>(args)...).first; } template <typename... Args> iterator try_emplace(const_iterator hint, key_type&& key, Args&&... args) { (void)hint; return try_emplace_impl(std::move(key), std::forward<Args>(args)...).first; } template <typename Mapped> std::pair<iterator, bool> insert_or_assign(const key_type& key, Mapped&& obj) { return insertOrAssignImpl(key, std::forward<Mapped>(obj)); } template <typename Mapped> std::pair<iterator, bool> insert_or_assign(key_type&& key, Mapped&& obj) { return insertOrAssignImpl(std::move(key), std::forward<Mapped>(obj)); } template <typename Mapped> iterator insert_or_assign(const_iterator hint, const key_type& key, Mapped&& obj) { (void)hint; return insertOrAssignImpl(key, std::forward<Mapped>(obj)).first; } template <typename Mapped> iterator insert_or_assign(const_iterator hint, key_type&& key, Mapped&& obj) { (void)hint; return insertOrAssignImpl(std::move(key), std::forward<Mapped>(obj)).first; } std::pair<iterator, bool> insert(const value_type& keyval) { ROBIN_HOOD_TRACE(this) return emplace(keyval); } iterator insert(const_iterator hint, const value_type& keyval) { (void)hint; return emplace(keyval).first; } std::pair<iterator, bool> insert(value_type&& keyval) { return emplace(std::move(keyval)); } iterator insert(const_iterator hint, value_type&& keyval) { (void)hint; return emplace(std::move(keyval)).first; } // Returns 1 if key is found, 0 otherwise. size_t count(const key_type& key) const { // NOLINT(modernize-use-nodiscard) ROBIN_HOOD_TRACE(this) auto kv = mKeyVals + findIdx(key); if (kv != reinterpret_cast_no_cast_align_warning<Node*>(mInfo)) { return 1; } return 0; } template <typename OtherKey, typename Self_ = Self> // NOLINTNEXTLINE(modernize-use-nodiscard) typename std::enable_if<Self_::is_transparent, size_t>::type count(const OtherKey& key) const { ROBIN_HOOD_TRACE(this) auto kv = mKeyVals + findIdx(key); if (kv != reinterpret_cast_no_cast_align_warning<Node*>(mInfo)) { return 1; } return 0; } bool contains(const key_type& key) const { // NOLINT(modernize-use-nodiscard) return 1U == count(key); } template <typename OtherKey, typename Self_ = Self> // NOLINTNEXTLINE(modernize-use-nodiscard) typename std::enable_if<Self_::is_transparent, bool>::type contains(const OtherKey& key) const { return 1U == count(key); } // Returns a reference to the value found for key. // Throws std::out_of_range if element cannot be found template <typename Q = mapped_type> // NOLINTNEXTLINE(modernize-use-nodiscard) typename std::enable_if<!std::is_void<Q>::value, Q&>::type at(key_type const& key) { ROBIN_HOOD_TRACE(this) auto kv = mKeyVals + findIdx(key); if (kv == reinterpret_cast_no_cast_align_warning<Node*>(mInfo)) { doThrow<std::out_of_range>("key not found"); } return kv->getSecond(); } // Returns a reference to the value found for key. // Throws std::out_of_range if element cannot be found template <typename Q = mapped_type> // NOLINTNEXTLINE(modernize-use-nodiscard) typename std::enable_if<!std::is_void<Q>::value, Q const&>::type at(key_type const& key) const { ROBIN_HOOD_TRACE(this) auto kv = mKeyVals + findIdx(key); if (kv == reinterpret_cast_no_cast_align_warning<Node*>(mInfo)) { doThrow<std::out_of_range>("key not found"); } return kv->getSecond(); } const_iterator find(const key_type& key) const { // NOLINT(modernize-use-nodiscard) ROBIN_HOOD_TRACE(this) const size_t idx = findIdx(key); return const_iterator{mKeyVals + idx, mInfo + idx}; } template <typename OtherKey> const_iterator find(const OtherKey& key, is_transparent_tag /*unused*/) const { ROBIN_HOOD_TRACE(this) const size_t idx = findIdx(key); return const_iterator{mKeyVals + idx, mInfo + idx}; } template <typename OtherKey, typename Self_ = Self> typename std::enable_if<Self_::is_transparent, // NOLINT(modernize-use-nodiscard) const_iterator>::type // NOLINT(modernize-use-nodiscard) find(const OtherKey& key) const { // NOLINT(modernize-use-nodiscard) ROBIN_HOOD_TRACE(this) const size_t idx = findIdx(key); return const_iterator{mKeyVals + idx, mInfo + idx}; } iterator find(const key_type& key) { ROBIN_HOOD_TRACE(this) const size_t idx = findIdx(key); return iterator{mKeyVals + idx, mInfo + idx}; } template <typename OtherKey> iterator find(const OtherKey& key, is_transparent_tag /*unused*/) { ROBIN_HOOD_TRACE(this) const size_t idx = findIdx(key); return iterator{mKeyVals + idx, mInfo + idx}; } template <typename OtherKey, typename Self_ = Self> typename std::enable_if<Self_::is_transparent, iterator>::type find(const OtherKey& key) { ROBIN_HOOD_TRACE(this) const size_t idx = findIdx(key); return iterator{mKeyVals + idx, mInfo + idx}; } iterator begin() { ROBIN_HOOD_TRACE(this) if (empty()) { return end(); } return iterator(mKeyVals, mInfo, fast_forward_tag{}); } const_iterator begin() const { // NOLINT(modernize-use-nodiscard) ROBIN_HOOD_TRACE(this) return cbegin(); } const_iterator cbegin() const { // NOLINT(modernize-use-nodiscard) ROBIN_HOOD_TRACE(this) if (empty()) { return cend(); } return const_iterator(mKeyVals, mInfo, fast_forward_tag{}); } iterator end() { ROBIN_HOOD_TRACE(this) // no need to supply valid info pointer: end() must not be dereferenced, and only node // pointer is compared. return iterator{reinterpret_cast_no_cast_align_warning<Node*>(mInfo), nullptr}; } const_iterator end() const { // NOLINT(modernize-use-nodiscard) ROBIN_HOOD_TRACE(this) return cend(); } const_iterator cend() const { // NOLINT(modernize-use-nodiscard) ROBIN_HOOD_TRACE(this) return const_iterator{reinterpret_cast_no_cast_align_warning<Node*>(mInfo), nullptr}; } iterator erase(const_iterator pos) { ROBIN_HOOD_TRACE(this) // its safe to perform const cast here // NOLINTNEXTLINE(cppcoreguidelines-pro-type-const-cast) return erase(iterator{const_cast<Node*>(pos.mKeyVals), const_cast<uint8_t*>(pos.mInfo)}); } // Erases element at pos, returns iterator to the next element. iterator erase(iterator pos) { ROBIN_HOOD_TRACE(this) // we assume that pos always points to a valid entry, and not end(). auto const idx = static_cast<size_t>(pos.mKeyVals - mKeyVals); shiftDown(idx); --mNumElements; if (*pos.mInfo) { // we've backward shifted, return this again return pos; } // no backward shift, return next element return ++pos; } size_t erase(const key_type& key) { ROBIN_HOOD_TRACE(this) size_t idx{}; InfoType info{}; keyToIdx(key, &idx, &info); // check while info matches with the source idx do { if (info == mInfo[idx] && WKeyEqual::operator()(key, mKeyVals[idx].getFirst())) { shiftDown(idx); --mNumElements; return 1; } next(&info, &idx); } while (info <= mInfo[idx]); // nothing found to delete return 0; } // reserves space for the specified number of elements. Makes sure the old data fits. // exactly the same as reserve(c). void rehash(size_t c) { // forces a reserve reserve(c, true); } // reserves space for the specified number of elements. Makes sure the old data fits. // Exactly the same as rehash(c). Use rehash(0) to shrink to fit. void reserve(size_t c) { // reserve, but don't force rehash reserve(c, false); } // If possible reallocates the map to a smaller one. This frees the underlying table. // Does not do anything if load_factor is too large for decreasing the table's size. void compact() { ROBIN_HOOD_TRACE(this) auto newSize = InitialNumElements; while (calcMaxNumElementsAllowed(newSize) < mNumElements && newSize != 0) { newSize *= 2; } if (ROBIN_HOOD_UNLIKELY(newSize == 0)) { throwOverflowError(); } ROBIN_HOOD_LOG("newSize > mMask + 1: " << newSize << " > " << mMask << " + 1") // only actually do anything when the new size is bigger than the old one. This prevents to // continuously allocate for each reserve() call. if (newSize < mMask + 1) { rehashPowerOfTwo(newSize, true); } } size_type size() const noexcept { // NOLINT(modernize-use-nodiscard) ROBIN_HOOD_TRACE(this) return mNumElements; } size_type max_size() const noexcept { // NOLINT(modernize-use-nodiscard) ROBIN_HOOD_TRACE(this) return static_cast<size_type>(-1); } ROBIN_HOOD(NODISCARD) bool empty() const noexcept { ROBIN_HOOD_TRACE(this) return 0 == mNumElements; } float max_load_factor() const noexcept { // NOLINT(modernize-use-nodiscard) ROBIN_HOOD_TRACE(this) return MaxLoadFactor100 / 100.0F; } // Average number of elements per bucket. Since we allow only 1 per bucket float load_factor() const noexcept { // NOLINT(modernize-use-nodiscard) ROBIN_HOOD_TRACE(this) return static_cast<float>(size()) / static_cast<float>(mMask + 1); } ROBIN_HOOD(NODISCARD) size_t mask() const noexcept { ROBIN_HOOD_TRACE(this) return mMask; } ROBIN_HOOD(NODISCARD) size_t calcMaxNumElementsAllowed(size_t maxElements) const noexcept { if (ROBIN_HOOD_LIKELY(maxElements <= (std::numeric_limits<size_t>::max)() / 100)) { return maxElements * MaxLoadFactor100 / 100; } // we might be a bit inprecise, but since maxElements is quite large that doesn't matter return (maxElements / 100) * MaxLoadFactor100; } ROBIN_HOOD(NODISCARD) size_t calcNumBytesInfo(size_t numElements) const noexcept { // we add a uint64_t, which houses the sentinel (first byte) and padding so we can load // 64bit types. return numElements + sizeof(uint64_t); } ROBIN_HOOD(NODISCARD) size_t calcNumElementsWithBuffer(size_t numElements) const noexcept { auto maxNumElementsAllowed = calcMaxNumElementsAllowed(numElements); return numElements + (std::min)(maxNumElementsAllowed, (static_cast<size_t>(0xFF))); } // calculation only allowed for 2^n values ROBIN_HOOD(NODISCARD) size_t calcNumBytesTotal(size_t numElements) const { #if ROBIN_HOOD(BITNESS) == 64 return numElements * sizeof(Node) + calcNumBytesInfo(numElements); #else // make sure we're doing 64bit operations, so we are at least safe against 32bit overflows. auto const ne = static_cast<uint64_t>(numElements); auto const s = static_cast<uint64_t>(sizeof(Node)); auto const infos = static_cast<uint64_t>(calcNumBytesInfo(numElements)); auto const total64 = ne * s + infos; auto const total = static_cast<size_t>(total64); if (ROBIN_HOOD_UNLIKELY(static_cast<uint64_t>(total) != total64)) { throwOverflowError(); } return total; #endif } private: template <typename Q = mapped_type> ROBIN_HOOD(NODISCARD) typename std::enable_if<!std::is_void<Q>::value, bool>::type has(const value_type& e) const { ROBIN_HOOD_TRACE(this) auto it = find(e.first); return it != end() && it->second == e.second; } template <typename Q = mapped_type> ROBIN_HOOD(NODISCARD) typename std::enable_if<std::is_void<Q>::value, bool>::type has(const value_type& e) const { ROBIN_HOOD_TRACE(this) return find(e) != end(); } void reserve(size_t c, bool forceRehash) { ROBIN_HOOD_TRACE(this) auto const minElementsAllowed = (std::max)(c, mNumElements); auto newSize = InitialNumElements; while (calcMaxNumElementsAllowed(newSize) < minElementsAllowed && newSize != 0) { newSize *= 2; } if (ROBIN_HOOD_UNLIKELY(newSize == 0)) { throwOverflowError(); } ROBIN_HOOD_LOG("newSize > mMask + 1: " << newSize << " > " << mMask << " + 1") // only actually do anything when the new size is bigger than the old one. This prevents to // continuously allocate for each reserve() call. if (forceRehash || newSize > mMask + 1) { rehashPowerOfTwo(newSize, false); } } // reserves space for at least the specified number of elements. // only works if numBuckets if power of two // True on success, false otherwise void rehashPowerOfTwo(size_t numBuckets, bool forceFree) { ROBIN_HOOD_TRACE(this) Node* const oldKeyVals = mKeyVals; uint8_t const* const oldInfo = mInfo; const size_t oldMaxElementsWithBuffer = calcNumElementsWithBuffer(mMask + 1); // resize operation: move stuff initData(numBuckets); if (oldMaxElementsWithBuffer > 1) { for (size_t i = 0; i < oldMaxElementsWithBuffer; ++i) { if (oldInfo[i] != 0) { // might throw an exception, which is really bad since we are in the middle of // moving stuff. insert_move(std::move(oldKeyVals[i])); // destroy the node but DON'T destroy the data. oldKeyVals[i].~Node(); } } // this check is not necessary as it's guarded by the previous if, but it helps // silence g++'s overeager "attempt to free a non-heap object 'map' // [-Werror=free-nonheap-object]" warning. if (oldKeyVals != reinterpret_cast_no_cast_align_warning<Node*>(&mMask)) { // don't destroy old data: put it into the pool instead if (forceFree) { std::free(oldKeyVals); } else { DataPool::addOrFree(oldKeyVals, calcNumBytesTotal(oldMaxElementsWithBuffer)); } } } } ROBIN_HOOD(NOINLINE) void throwOverflowError() const { #if ROBIN_HOOD(HAS_EXCEPTIONS) throw std::overflow_error("robin_hood::map overflow"); #else abort(); #endif } template <typename OtherKey, typename... Args> std::pair<iterator, bool> try_emplace_impl(OtherKey&& key, Args&&... args) { ROBIN_HOOD_TRACE(this) auto idxAndState = insertKeyPrepareEmptySpot(key); switch (idxAndState.second) { case InsertionState::key_found: break; case InsertionState::new_node: ::new (static_cast<void*>(&mKeyVals[idxAndState.first])) Node( *this, std::piecewise_construct, std::forward_as_tuple(std::forward<OtherKey>(key)), std::forward_as_tuple(std::forward<Args>(args)...)); break; case InsertionState::overwrite_node: mKeyVals[idxAndState.first] = Node(*this, std::piecewise_construct, std::forward_as_tuple(std::forward<OtherKey>(key)), std::forward_as_tuple(std::forward<Args>(args)...)); break; case InsertionState::overflow_error: throwOverflowError(); break; } return std::make_pair(iterator(mKeyVals + idxAndState.first, mInfo + idxAndState.first), InsertionState::key_found != idxAndState.second); } template <typename OtherKey, typename Mapped> std::pair<iterator, bool> insertOrAssignImpl(OtherKey&& key, Mapped&& obj) { ROBIN_HOOD_TRACE(this) auto idxAndState = insertKeyPrepareEmptySpot(key); switch (idxAndState.second) { case InsertionState::key_found: mKeyVals[idxAndState.first].getSecond() = std::forward<Mapped>(obj); break; case InsertionState::new_node: ::new (static_cast<void*>(&mKeyVals[idxAndState.first])) Node( *this, std::piecewise_construct, std::forward_as_tuple(std::forward<OtherKey>(key)), std::forward_as_tuple(std::forward<Mapped>(obj))); break; case InsertionState::overwrite_node: mKeyVals[idxAndState.first] = Node(*this, std::piecewise_construct, std::forward_as_tuple(std::forward<OtherKey>(key)), std::forward_as_tuple(std::forward<Mapped>(obj))); break; case InsertionState::overflow_error: throwOverflowError(); break; } return std::make_pair(iterator(mKeyVals + idxAndState.first, mInfo + idxAndState.first), InsertionState::key_found != idxAndState.second); } void initData(size_t max_elements) { mNumElements = 0; mMask = max_elements - 1; mMaxNumElementsAllowed = calcMaxNumElementsAllowed(max_elements); auto const numElementsWithBuffer = calcNumElementsWithBuffer(max_elements); // malloc & zero mInfo. Faster than calloc everything. auto const numBytesTotal = calcNumBytesTotal(numElementsWithBuffer); ROBIN_HOOD_LOG("std::calloc " << numBytesTotal << " = calcNumBytesTotal(" << numElementsWithBuffer << ")") mKeyVals = reinterpret_cast<Node*>( detail::assertNotNull<std::bad_alloc>(std::malloc(numBytesTotal))); mInfo = reinterpret_cast<uint8_t*>(mKeyVals + numElementsWithBuffer); std::memset(mInfo, 0, numBytesTotal - numElementsWithBuffer * sizeof(Node)); // set sentinel mInfo[numElementsWithBuffer] = 1; mInfoInc = InitialInfoInc; mInfoHashShift = InitialInfoHashShift; } enum class InsertionState { overflow_error, key_found, new_node, overwrite_node }; // Finds key, and if not already present prepares a spot where to pot the key & value. // This potentially shifts nodes out of the way, updates mInfo and number of inserted // elements, so the only operation left to do is create/assign a new node at that spot. template <typename OtherKey> std::pair<size_t, InsertionState> insertKeyPrepareEmptySpot(OtherKey&& key) { for (int i = 0; i < 256; ++i) { size_t idx{}; InfoType info{}; keyToIdx(key, &idx, &info); nextWhileLess(&info, &idx); // while we potentially have a match while (info == mInfo[idx]) { if (WKeyEqual::operator()(key, mKeyVals[idx].getFirst())) { // key already exists, do NOT insert. // see http://en.cppreference.com/w/cpp/container/unordered_map/insert return std::make_pair(idx, InsertionState::key_found); } next(&info, &idx); } // unlikely that this evaluates to true if (ROBIN_HOOD_UNLIKELY(mNumElements >= mMaxNumElementsAllowed)) { if (!increase_size()) { return std::make_pair(size_t(0), InsertionState::overflow_error); } continue; } // key not found, so we are now exactly where we want to insert it. auto const insertion_idx = idx; auto const insertion_info = info; if (ROBIN_HOOD_UNLIKELY(insertion_info + mInfoInc > 0xFF)) { mMaxNumElementsAllowed = 0; } // find an empty spot while (0 != mInfo[idx]) { next(&info, &idx); } if (idx != insertion_idx) { shiftUp(idx, insertion_idx); } // put at empty spot mInfo[insertion_idx] = static_cast<uint8_t>(insertion_info); ++mNumElements; return std::make_pair(insertion_idx, idx == insertion_idx ? InsertionState::new_node : InsertionState::overwrite_node); } // enough attempts failed, so finally give up. return std::make_pair(size_t(0), InsertionState::overflow_error); } bool try_increase_info() { ROBIN_HOOD_LOG("mInfoInc=" << mInfoInc << ", numElements=" << mNumElements << ", maxNumElementsAllowed=" << calcMaxNumElementsAllowed(mMask + 1)) if (mInfoInc <= 2) { // need to be > 2 so that shift works (otherwise undefined behavior!) return false; } // we got space left, try to make info smaller mInfoInc = static_cast<uint8_t>(mInfoInc >> 1U); // remove one bit of the hash, leaving more space for the distance info. // This is extremely fast because we can operate on 8 bytes at once. ++mInfoHashShift; auto const numElementsWithBuffer = calcNumElementsWithBuffer(mMask + 1); for (size_t i = 0; i < numElementsWithBuffer; i += 8) { auto val = unaligned_load<uint64_t>(mInfo + i); val = (val >> 1U) & UINT64_C(0x7f7f7f7f7f7f7f7f); std::memcpy(mInfo + i, &val, sizeof(val)); } // update sentinel, which might have been cleared out! mInfo[numElementsWithBuffer] = 1; mMaxNumElementsAllowed = calcMaxNumElementsAllowed(mMask + 1); return true; } // True if resize was possible, false otherwise bool increase_size() { // nothing allocated yet? just allocate InitialNumElements if (0 == mMask) { initData(InitialNumElements); return true; } auto const maxNumElementsAllowed = calcMaxNumElementsAllowed(mMask + 1); if (mNumElements < maxNumElementsAllowed && try_increase_info()) { return true; } ROBIN_HOOD_LOG("mNumElements=" << mNumElements << ", maxNumElementsAllowed=" << maxNumElementsAllowed << ", load=" << (static_cast<double>(mNumElements) * 100.0 / (static_cast<double>(mMask) + 1))) if (mNumElements * 2 < calcMaxNumElementsAllowed(mMask + 1)) { // we have to resize, even though there would still be plenty of space left! // Try to rehash instead. Delete freed memory so we don't steadyily increase mem in case // we have to rehash a few times nextHashMultiplier(); rehashPowerOfTwo(mMask + 1, true); } else { // we've reached the capacity of the map, so the hash seems to work nice. Keep using it. rehashPowerOfTwo((mMask + 1) * 2, false); } return true; } void nextHashMultiplier() { // adding an *even* number, so that the multiplier will always stay odd. This is necessary // so that the hash stays a mixing function (and thus doesn't have any information loss). mHashMultiplier += UINT64_C(0xc4ceb9fe1a85ec54); } void destroy() { if (0 == mMask) { // don't deallocate! return; } Destroyer<Self, IsFlat && std::is_trivially_destructible<Node>::value>{} .nodesDoNotDeallocate(*this); // This protection against not deleting mMask shouldn't be needed as it's sufficiently // protected with the 0==mMask check, but I have this anyways because g++ 7 otherwise // reports a compile error: attempt to free a non-heap object 'fm' // [-Werror=free-nonheap-object] if (mKeyVals != reinterpret_cast_no_cast_align_warning<Node*>(&mMask)) { ROBIN_HOOD_LOG("std::free") std::free(mKeyVals); } } void init() noexcept { mKeyVals = reinterpret_cast_no_cast_align_warning<Node*>(&mMask); mInfo = reinterpret_cast<uint8_t*>(&mMask); mNumElements = 0; mMask = 0; mMaxNumElementsAllowed = 0; mInfoInc = InitialInfoInc; mInfoHashShift = InitialInfoHashShift; } // members are sorted so no padding occurs uint64_t mHashMultiplier = UINT64_C(0xc4ceb9fe1a85ec53); // 8 byte 8 Node* mKeyVals = reinterpret_cast_no_cast_align_warning<Node*>(&mMask); // 8 byte 16 uint8_t* mInfo = reinterpret_cast<uint8_t*>(&mMask); // 8 byte 24 size_t mNumElements = 0; // 8 byte 32 size_t mMask = 0; // 8 byte 40 size_t mMaxNumElementsAllowed = 0; // 8 byte 48 InfoType mInfoInc = InitialInfoInc; // 4 byte 52 InfoType mInfoHashShift = InitialInfoHashShift; // 4 byte 56 // 16 byte 56 if NodeAllocator }; } // namespace detail // map template <typename Key, typename T, typename Hash = hash<Key>, typename KeyEqual = std::equal_to<Key>, size_t MaxLoadFactor100 = 80> using unordered_flat_map = detail::Table<true, MaxLoadFactor100, Key, T, Hash, KeyEqual>; template <typename Key, typename T, typename Hash = hash<Key>, typename KeyEqual = std::equal_to<Key>, size_t MaxLoadFactor100 = 80> using unordered_node_map = detail::Table<false, MaxLoadFactor100, Key, T, Hash, KeyEqual>; template <typename Key, typename T, typename Hash = hash<Key>, typename KeyEqual = std::equal_to<Key>, size_t MaxLoadFactor100 = 80> using unordered_map = detail::Table<sizeof(robin_hood::pair<Key, T>) <= sizeof(size_t) * 6 && std::is_nothrow_move_constructible<robin_hood::pair<Key, T>>::value && std::is_nothrow_move_assignable<robin_hood::pair<Key, T>>::value, MaxLoadFactor100, Key, T, Hash, KeyEqual>; // set template <typename Key, typename Hash = hash<Key>, typename KeyEqual = std::equal_to<Key>, size_t MaxLoadFactor100 = 80> using unordered_flat_set = detail::Table<true, MaxLoadFactor100, Key, void, Hash, KeyEqual>; template <typename Key, typename Hash = hash<Key>, typename KeyEqual = std::equal_to<Key>, size_t MaxLoadFactor100 = 80> using unordered_node_set = detail::Table<false, MaxLoadFactor100, Key, void, Hash, KeyEqual>; template <typename Key, typename Hash = hash<Key>, typename KeyEqual = std::equal_to<Key>, size_t MaxLoadFactor100 = 80> using unordered_set = detail::Table<sizeof(Key) <= sizeof(size_t) * 6 && std::is_nothrow_move_constructible<Key>::value && std::is_nothrow_move_assignable<Key>::value, MaxLoadFactor100, Key, void, Hash, KeyEqual>; } // namespace robin_hood #endif #define FOR(i, a, b) for(int i =(a); i < (b); ++i) #define re(i, n) FOR(i, 1, n) #define ford(i, a, b) for(int i = (a); i >= (b); --i) #define rep(i, n) for(int i = 0;i <(n); ++i) #define all(x) (x).begin(), (x).end() #define sz(x) (int) (x).size() using namespace std; typedef long long ll; typedef pair<ll, ll> pll; typedef pair<int, int> pii; typedef vector<ll> vll; typedef vector<int> vi; typedef vector<pll> vpll; typedef vector<pii> vpii; const ll inf = 1e18; const int N = 5005; const int mod = 1e9 + 7; vi ans; int n; int m; ll m1 = 1e9 + 69 + 69 + 69; ll hbase = 2137; struct pllhash { int operator()(const pair<int, ll>& a) const { return a.first + m1 * a.second; } }; robin_hood::unordered_flat_map<pll, pii, pllhash> hash_map; vector<ll> basepow[2]; inline ll mod_subt(ll a, ll b, ll mod) { return (a - b < 0) ? a - b + mod : a - b; } inline ll mod_add(ll a, ll b, ll mod) { return (a + b >= mod) ? a + b - mod : a + b; } struct pe { int cur; int init; int cnt1; int cnt2; const bool operator<(const pe& b) const { return cur < b.cur; } }; void f(const vi& A, int B, vpii& out) { priority_queue<pii> pq; int t = -1; int cur = 1; int cnt22 = 1; vector<pe> chuj; int used = 0; for (int i = 1; i < sz(A); i++) { if (A[i]== A[i-1]) { cnt22++; } else { pe c; c.cnt1 = 0; c.cnt2 = cnt22; cnt22 = 1; c.init = c.cur = A[i-1]; chuj.push_back(c); pq.push({c.cur, sz(chuj)-1}); } } pe c; c.cnt1 = 0; c.cnt2 = cnt22; c.init = c.cur = A.back(); chuj.push_back(c); pq.push({c.cur, sz(chuj)-1}); while (B && !pq.empty()) { pii vp = pq.top(); int idx = vp.second; int cur = chuj[idx].cur; int init = chuj[idx].init; int cnt = chuj[idx].cnt1; int cnt2 = chuj[idx].cnt2; if (B - used < cnt2) break; pq.pop(); used += cnt2; cnt++; out.push_back({used, cur}); cur = (init + 2*cnt) / (cnt + 1); if (cur > 2) { chuj[idx].cur = cur; chuj[idx].cnt1 = cnt; pq.push({cur, idx}); } } if (pq.empty()) out.push_back({B+1, 2}); else out.push_back({B+1, chuj[pq.top().second].cur}); } void process_dupa(const vi& A, int mode) { int n = sz(A); for (int i = 0; i < n; i++) { ll h1 = 1ll; ll h2 = 1ll; vi As = {1}; int t = -1; int cur = 1; int l = 1; int pcur = cur; for (int j = i+1; j < n; j++) { if (A[j] > A[j-1]) { if (t == 1) { cur++; } else if (t == 0) { t = 1; As.push_back(cur); pcur = -1; cur = 2; } else { t = 1; cur++; } } else { if (t == 0) { cur++; } else if (t == 1) { t = 0; As.push_back(cur); pcur = -1; cur=2; } else { t = 0; cur++; } } As.back() = cur; if (pcur != -1) { h1 = mod_subt(h1, basepow[0][pcur], m1); h2 -= basepow[1][pcur]; } h1 = mod_add(h1, basepow[0][cur],m1); h2 += basepow[1][cur]; if (mode) { hash_map[{h1, h2}].first++; } else { hash_map[{h1, h2}].second++; } } } } void process_dupa2(const vi& A, int mode) { int nn = sz(A); for (int i = 0; i < nn; i++) { ll h1 = 1ll; ll h2 = 1ll; vi As = {1}; int t = -1; int cur = 1; int l = 1; int pcur = cur; for (int j = i+1; j < nn; j++) { l++; if (A[j] > A[j-1]) { if (t == 1) { cur++; } else if (t == 0) { t = 1; As.push_back(cur); pcur = -1; cur = 2; } else { t = 1; cur++; } } else { if (t == 0) { cur++; } else if (t == 1) { t = 0; As.push_back(cur); pcur = -1; cur=2; } else { t = 0; cur++; } } As.back() = cur; if (pcur != -1) { h1 = mod_subt(h1, basepow[0][pcur], m1); h2 -= basepow[1][pcur]; } h1 = mod_add(h1, basepow[0][cur],m1); h2 += basepow[1][cur]; auto it = hash_map[{h1, h2}]; if (it.first != -1) { int a_oc = it.first; int b_oc = it.second; vpii outt; f(As, min(l-1, m), outt); reverse(all(outt)); for (int i = 1; i < min(l, m+1); i++) { while (i >= outt.back().first) outt.pop_back(); ll dupa = outt.back().second; ans[dupa] += ((m-i+1) * a_oc % mod); ans[dupa] %= mod; ans[dupa] += ((n - i + 1) * b_oc % mod); ans[dupa] %= mod; } hash_map[{h1, h2}] = {-1, -1}; } } } } int main() { ios_base::sync_with_stdio(0); cin >> n >> m; vi A(n); vi B(m); ans.resize(n + m + 1); basepow[0].resize(n + m + 1); basepow[1].resize(n + m + 1); basepow[0][0] = 1; basepow[1][0] = 1; for (int i = 1; i <= n + m; i++) { basepow[0][i] = basepow[0][i-1] * hbase; basepow[0][i] %= m1; basepow[1][i] = basepow[1][i-1] * hbase; } rep(i, n) { cin >> A[i]; } rep(i, m) { cin >> B[i]; } if (m > n) { swap(m, n); swap(A, B); } process_dupa(A, 1); process_dupa(B, 0); process_dupa2(A, 1); process_dupa2(B, 0); for (int i = 1; i <= (min(n, m)); i++) { ans[2] += ((n-i+1) * (m-i+1) % mod); ans[2] %= mod; } for (int i = 1; i <= n + m; i++) cout << ans[i] << " "; cout << '\n'; }
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 | #include <bits/stdc++.h> #ifndef ROBIN_HOOD_H_INCLUDED #define ROBIN_HOOD_H_INCLUDED // see https://semver.org/ #define ROBIN_HOOD_VERSION_MAJOR 3 // for incompatible API changes #define ROBIN_HOOD_VERSION_MINOR 11 // for adding functionality in a backwards-compatible manner #define ROBIN_HOOD_VERSION_PATCH 5 // for backwards-compatible bug fixes #include <algorithm> #include <cstdlib> #include <cstring> #include <functional> #include <limits> #include <memory> // only to support hash of smart pointers #include <stdexcept> #include <string> #include <type_traits> #include <utility> #if __cplusplus >= 201703L # include <string_view> #endif // #define ROBIN_HOOD_LOG_ENABLED #ifdef ROBIN_HOOD_LOG_ENABLED # include <iostream> # define ROBIN_HOOD_LOG(...) \ std::cout << __FUNCTION__ << "@" << __LINE__ << ": " << __VA_ARGS__ << std::endl; #else # define ROBIN_HOOD_LOG(x) #endif // #define ROBIN_HOOD_TRACE_ENABLED #ifdef ROBIN_HOOD_TRACE_ENABLED # include <iostream> # define ROBIN_HOOD_TRACE(...) \ std::cout << __FUNCTION__ << "@" << __LINE__ << ": " << __VA_ARGS__ << std::endl; #else # define ROBIN_HOOD_TRACE(x) #endif // #define ROBIN_HOOD_COUNT_ENABLED #ifdef ROBIN_HOOD_COUNT_ENABLED # include <iostream> # define ROBIN_HOOD_COUNT(x) ++counts().x; namespace robin_hood { struct Counts { uint64_t shiftUp{}; uint64_t shiftDown{}; }; inline std::ostream& operator<<(std::ostream& os, Counts const& c) { return os << c.shiftUp << " shiftUp" << std::endl << c.shiftDown << " shiftDown" << std::endl; } static Counts& counts() { static Counts counts{}; return counts; } } // namespace robin_hood #else # define ROBIN_HOOD_COUNT(x) #endif // all non-argument macros should use this facility. See // https://www.fluentcpp.com/2019/05/28/better-macros-better-flags/ #define ROBIN_HOOD(x) ROBIN_HOOD_PRIVATE_DEFINITION_##x() // mark unused members with this macro #define ROBIN_HOOD_UNUSED(identifier) // bitness #if SIZE_MAX == UINT32_MAX # define ROBIN_HOOD_PRIVATE_DEFINITION_BITNESS() 32 #elif SIZE_MAX == UINT64_MAX # define ROBIN_HOOD_PRIVATE_DEFINITION_BITNESS() 64 #else # error Unsupported bitness #endif // endianess #ifdef _MSC_VER # define ROBIN_HOOD_PRIVATE_DEFINITION_LITTLE_ENDIAN() 1 # define ROBIN_HOOD_PRIVATE_DEFINITION_BIG_ENDIAN() 0 #else # define ROBIN_HOOD_PRIVATE_DEFINITION_LITTLE_ENDIAN() \ (__BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__) # define ROBIN_HOOD_PRIVATE_DEFINITION_BIG_ENDIAN() (__BYTE_ORDER__ == __ORDER_BIG_ENDIAN__) #endif // inline #ifdef _MSC_VER # define ROBIN_HOOD_PRIVATE_DEFINITION_NOINLINE() __declspec(noinline) #else # define ROBIN_HOOD_PRIVATE_DEFINITION_NOINLINE() __attribute__((noinline)) #endif // exceptions #if !defined(__cpp_exceptions) && !defined(__EXCEPTIONS) && !defined(_CPPUNWIND) # define ROBIN_HOOD_PRIVATE_DEFINITION_HAS_EXCEPTIONS() 0 #else # define ROBIN_HOOD_PRIVATE_DEFINITION_HAS_EXCEPTIONS() 1 #endif // count leading/trailing bits #if !defined(ROBIN_HOOD_DISABLE_INTRINSICS) # ifdef _MSC_VER # if ROBIN_HOOD(BITNESS) == 32 # define ROBIN_HOOD_PRIVATE_DEFINITION_BITSCANFORWARD() _BitScanForward # else # define ROBIN_HOOD_PRIVATE_DEFINITION_BITSCANFORWARD() _BitScanForward64 # endif # include <intrin.h> # pragma intrinsic(ROBIN_HOOD(BITSCANFORWARD)) # define ROBIN_HOOD_COUNT_TRAILING_ZEROES(x) \ [](size_t mask) noexcept -> int { \ unsigned long index; \ return ROBIN_HOOD(BITSCANFORWARD)(&index, mask) ? static_cast<int>(index) \ : ROBIN_HOOD(BITNESS); \ }(x) # else # if ROBIN_HOOD(BITNESS) == 32 # define ROBIN_HOOD_PRIVATE_DEFINITION_CTZ() __builtin_ctzl # define ROBIN_HOOD_PRIVATE_DEFINITION_CLZ() __builtin_clzl # else # define ROBIN_HOOD_PRIVATE_DEFINITION_CTZ() __builtin_ctzll # define ROBIN_HOOD_PRIVATE_DEFINITION_CLZ() __builtin_clzll # endif # define ROBIN_HOOD_COUNT_LEADING_ZEROES(x) ((x) ? ROBIN_HOOD(CLZ)(x) : ROBIN_HOOD(BITNESS)) # define ROBIN_HOOD_COUNT_TRAILING_ZEROES(x) ((x) ? ROBIN_HOOD(CTZ)(x) : ROBIN_HOOD(BITNESS)) # endif #endif // fallthrough #ifndef __has_cpp_attribute // For backwards compatibility # define __has_cpp_attribute(x) 0 #endif #if __has_cpp_attribute(clang::fallthrough) # define ROBIN_HOOD_PRIVATE_DEFINITION_FALLTHROUGH() [[clang::fallthrough]] #elif __has_cpp_attribute(gnu::fallthrough) # define ROBIN_HOOD_PRIVATE_DEFINITION_FALLTHROUGH() [[gnu::fallthrough]] #else # define ROBIN_HOOD_PRIVATE_DEFINITION_FALLTHROUGH() #endif // likely/unlikely #ifdef _MSC_VER # define ROBIN_HOOD_LIKELY(condition) condition # define ROBIN_HOOD_UNLIKELY(condition) condition #else # define ROBIN_HOOD_LIKELY(condition) __builtin_expect(condition, 1) # define ROBIN_HOOD_UNLIKELY(condition) __builtin_expect(condition, 0) #endif // detect if native wchar_t type is availiable in MSVC #ifdef _MSC_VER # ifdef _NATIVE_WCHAR_T_DEFINED # define ROBIN_HOOD_PRIVATE_DEFINITION_HAS_NATIVE_WCHART() 1 # else # define ROBIN_HOOD_PRIVATE_DEFINITION_HAS_NATIVE_WCHART() 0 # endif #else # define ROBIN_HOOD_PRIVATE_DEFINITION_HAS_NATIVE_WCHART() 1 #endif // detect if MSVC supports the pair(std::piecewise_construct_t,...) consructor being constexpr #ifdef _MSC_VER # if _MSC_VER <= 1900 # define ROBIN_HOOD_PRIVATE_DEFINITION_BROKEN_CONSTEXPR() 1 # else # define ROBIN_HOOD_PRIVATE_DEFINITION_BROKEN_CONSTEXPR() 0 # endif #else # define ROBIN_HOOD_PRIVATE_DEFINITION_BROKEN_CONSTEXPR() 0 #endif // wcurtcurtcurtorkaround missing "is_trivially_copyable" in g++ < 5.0 // See https://stackoverflow.com/a/31798726/48181 #if defined(__GNUC__) && __GNUC__ < 5 && !defined(__clang__) # define ROBIN_HOOD_IS_TRIVIALLY_COPYABLE(...) __has_trivial_copy(__VA_ARGS__) #else # define ROBIN_HOOD_IS_TRIVIALLY_COPYABLE(...) std::is_trivially_copyable<__VA_ARGS__>::value #endif // helpers for C++ versions, see https://gcc.gnu.org/onlinedocs/cpp/Standard-Predefined-Macros.html #define ROBIN_HOOD_PRIVATE_DEFINITION_CXX() __cplusplus #define ROBIN_HOOD_PRIVATE_DEFINITION_CXX98() 199711L #define ROBIN_HOOD_PRIVATE_DEFINITION_CXX11() 201103L #define ROBIN_HOOD_PRIVATE_DEFINITION_CXX14() 201402L #define ROBIN_HOOD_PRIVATE_DEFINITION_CXX17() 201703L #if ROBIN_HOOD(CXX) >= ROBIN_HOOD(CXX17) # define ROBIN_HOOD_PRIVATE_DEFINITION_NODISCARD() [[nodiscard]] #else # define ROBIN_HOOD_PRIVATE_DEFINITION_NODISCARD() #endif namespace robin_hood { #if ROBIN_HOOD(CXX) >= ROBIN_HOOD(CXX14) # define ROBIN_HOOD_STD std #else // c++11 compatibility layer namespace ROBIN_HOOD_STD { template <class T> struct alignment_of : std::integral_constant<std::size_t, alignof(typename std::remove_all_extents<T>::type)> {}; template <class T, T... Ints> class integer_sequence { public: using value_type = T; static_assert(std::is_integral<value_type>::value, "not integral type"); static constexpr std::size_t size() noexcept { return sizeof...(Ints); } }; template <std::size_t... Inds> using index_sequence = integer_sequence<std::size_t, Inds...>; namespace detail_ { template <class T, T Begin, T End, bool> struct IntSeqImpl { using TValue = T; static_assert(std::is_integral<TValue>::value, "not integral type"); static_assert(Begin >= 0 && Begin < End, "unexpected argument (Begin<0 || Begin<=End)"); template <class, class> struct IntSeqCombiner; template <TValue... Inds0, TValue... Inds1> struct IntSeqCombiner<integer_sequence<TValue, Inds0...>, integer_sequence<TValue, Inds1...>> { using TResult = integer_sequence<TValue, Inds0..., Inds1...>; }; using TResult = typename IntSeqCombiner<typename IntSeqImpl<TValue, Begin, Begin + (End - Begin) / 2, (End - Begin) / 2 == 1>::TResult, typename IntSeqImpl<TValue, Begin + (End - Begin) / 2, End, (End - Begin + 1) / 2 == 1>::TResult>::TResult; }; template <class T, T Begin> struct IntSeqImpl<T, Begin, Begin, false> { using TValue = T; static_assert(std::is_integral<TValue>::value, "not integral type"); static_assert(Begin >= 0, "unexpected argument (Begin<0)"); using TResult = integer_sequence<TValue>; }; template <class T, T Begin, T End> struct IntSeqImpl<T, Begin, End, true> { using TValue = T; static_assert(std::is_integral<TValue>::value, "not integral type"); static_assert(Begin >= 0, "unexpected argument (Begin<0)"); using TResult = integer_sequence<TValue, Begin>; }; } // namespace detail_ template <class T, T N> using make_integer_sequence = typename detail_::IntSeqImpl<T, 0, N, (N - 0) == 1>::TResult; template <std::size_t N> using make_index_sequence = make_integer_sequence<std::size_t, N>; template <class... T> using index_sequence_for = make_index_sequence<sizeof...(T)>; } // namespace ROBIN_HOOD_STD #endif namespace detail { // make sure we static_cast to the correct type for hash_int #if ROBIN_HOOD(BITNESS) == 64 using SizeT = uint64_t; #else using SizeT = uint32_t; #endif template <typename T> T rotr(T x, unsigned k) { return (x >> k) | (x << (8U * sizeof(T) - k)); } // This cast gets rid of warnings like "cast from 'uint8_t*' {aka 'unsigned char*'} to // 'uint64_t*' {aka 'long unsigned int*'} increases required alignment of target type". Use with // care! template <typename T> inline T reinterpret_cast_no_cast_align_warning(void* ptr) noexcept { return reinterpret_cast<T>(ptr); } template <typename T> inline T reinterpret_cast_no_cast_align_warning(void const* ptr) noexcept { return reinterpret_cast<T>(ptr); } // make sure this is not inlined as it is slow and dramatically enlarges code, thus making other // inlinings more difficult. Throws are also generally the slow path. template <typename E, typename... Args> [[noreturn]] ROBIN_HOOD(NOINLINE) #if ROBIN_HOOD(HAS_EXCEPTIONS) void doThrow(Args&&... args) { // NOLINTNEXTLINE(cppcoreguidelines-pro-bounds-array-to-pointer-decay) throw E(std::forward<Args>(args)...); } #else void doThrow(Args&&... ROBIN_HOOD_UNUSED(args) /*unused*/) { abort(); } #endif template <typename E, typename T, typename... Args> T* assertNotNull(T* t, Args&&... args) { if (ROBIN_HOOD_UNLIKELY(nullptr == t)) { doThrow<E>(std::forward<Args>(args)...); } return t; } template <typename T> inline T unaligned_load(void const* ptr) noexcept { // using memcpy so we don't get into unaligned load problems. // compiler should optimize this very well anyways. T t; std::memcpy(&t, ptr, sizeof(T)); return t; } // Allocates bulks of memory for objects of type T. This deallocates the memory in the destructor, // and keeps a linked list of the allocated memory around. Overhead per allocation is the size of a // pointer. template <typename T, size_t MinNumAllocs = 4, size_t MaxNumAllocs = 256> class BulkPoolAllocator { public: BulkPoolAllocator() noexcept = default; // does not copy anything, just creates a new allocator. BulkPoolAllocator(const BulkPoolAllocator& ROBIN_HOOD_UNUSED(o) /*unused*/) noexcept : mHead(nullptr) , mListForFree(nullptr) {} BulkPoolAllocator(BulkPoolAllocator&& o) noexcept : mHead(o.mHead) , mListForFree(o.mListForFree) { o.mListForFree = nullptr; o.mHead = nullptr; } BulkPoolAllocator& operator=(BulkPoolAllocator&& o) noexcept { reset(); mHead = o.mHead; mListForFree = o.mListForFree; o.mListForFree = nullptr; o.mHead = nullptr; return *this; } BulkPoolAllocator& // NOLINTNEXTLINE(bugprone-unhandled-self-assignment,cert-oop54-cpp) operator=(const BulkPoolAllocator& ROBIN_HOOD_UNUSED(o) /*unused*/) noexcept { // does not do anything return *this; } ~BulkPoolAllocator() noexcept { reset(); } // Deallocates all allocated memory. void reset() noexcept { while (mListForFree) { T* tmp = *mListForFree; ROBIN_HOOD_LOG("std::free") std::free(mListForFree); mListForFree = reinterpret_cast_no_cast_align_warning<T**>(tmp); } mHead = nullptr; } // allocates, but does NOT initialize. Use in-place new constructor, e.g. // T* obj = pool.allocate(); // ::new (static_cast<void*>(obj)) T(); T* allocate() { T* tmp = mHead; if (!tmp) { tmp = performAllocation(); } mHead = *reinterpret_cast_no_cast_align_warning<T**>(tmp); return tmp; } // does not actually deallocate but puts it in store. // make sure you have already called the destructor! e.g. with // obj->~T(); // pool.deallocate(obj); void deallocate(T* obj) noexcept { *reinterpret_cast_no_cast_align_warning<T**>(obj) = mHead; mHead = obj; } // Adds an already allocated block of memory to the allocator. This allocator is from now on // responsible for freeing the data (with free()). If the provided data is not large enough to // make use of, it is immediately freed. Otherwise it is reused and freed in the destructor. void addOrFree(void* ptr, const size_t numBytes) noexcept { // calculate number of available elements in ptr if (numBytes < ALIGNMENT + ALIGNED_SIZE) { // not enough data for at least one element. Free and return. ROBIN_HOOD_LOG("std::free") std::free(ptr); } else { ROBIN_HOOD_LOG("add to buffer") add(ptr, numBytes); } } void swap(BulkPoolAllocator<T, MinNumAllocs, MaxNumAllocs>& other) noexcept { using std::swap; swap(mHead, other.mHead); swap(mListForFree, other.mListForFree); } private: // iterates the list of allocated memory to calculate how many to alloc next. // Recalculating this each time saves us a size_t member. // This ignores the fact that memory blocks might have been added manually with addOrFree. In // practice, this should not matter much. ROBIN_HOOD(NODISCARD) size_t calcNumElementsToAlloc() const noexcept { auto tmp = mListForFree; size_t numAllocs = MinNumAllocs; while (numAllocs * 2 <= MaxNumAllocs && tmp) { auto x = reinterpret_cast<T***>(tmp); tmp = *x; numAllocs *= 2; } return numAllocs; } // WARNING: Underflow if numBytes < ALIGNMENT! This is guarded in addOrFree(). void add(void* ptr, const size_t numBytes) noexcept { const size_t numElements = (numBytes - ALIGNMENT) / ALIGNED_SIZE; auto data = reinterpret_cast<T**>(ptr); // link free list auto x = reinterpret_cast<T***>(data); *x = mListForFree; mListForFree = data; // create linked list for newly allocated data auto* const headT = reinterpret_cast_no_cast_align_warning<T*>(reinterpret_cast<char*>(ptr) + ALIGNMENT); auto* const head = reinterpret_cast<char*>(headT); // Visual Studio compiler automatically unrolls this loop, which is pretty cool for (size_t i = 0; i < numElements; ++i) { *reinterpret_cast_no_cast_align_warning<char**>(head + i * ALIGNED_SIZE) = head + (i + 1) * ALIGNED_SIZE; } // last one points to 0 *reinterpret_cast_no_cast_align_warning<T**>(head + (numElements - 1) * ALIGNED_SIZE) = mHead; mHead = headT; } // Called when no memory is available (mHead == 0). // Don't inline this slow path. ROBIN_HOOD(NOINLINE) T* performAllocation() { size_t const numElementsToAlloc = calcNumElementsToAlloc(); // alloc new memory: [prev |T, T, ... T] size_t const bytes = ALIGNMENT + ALIGNED_SIZE * numElementsToAlloc; ROBIN_HOOD_LOG("std::malloc " << bytes << " = " << ALIGNMENT << " + " << ALIGNED_SIZE << " * " << numElementsToAlloc) add(assertNotNull<std::bad_alloc>(std::malloc(bytes)), bytes); return mHead; } // enforce byte alignment of the T's #if ROBIN_HOOD(CXX) >= ROBIN_HOOD(CXX14) static constexpr size_t ALIGNMENT = (std::max)(std::alignment_of<T>::value, std::alignment_of<T*>::value); #else static const size_t ALIGNMENT = (ROBIN_HOOD_STD::alignment_of<T>::value > ROBIN_HOOD_STD::alignment_of<T*>::value) ? ROBIN_HOOD_STD::alignment_of<T>::value : +ROBIN_HOOD_STD::alignment_of<T*>::value; // the + is for walkarround #endif static constexpr size_t ALIGNED_SIZE = ((sizeof(T) - 1) / ALIGNMENT + 1) * ALIGNMENT; static_assert(MinNumAllocs >= 1, "MinNumAllocs"); static_assert(MaxNumAllocs >= MinNumAllocs, "MaxNumAllocs"); static_assert(ALIGNED_SIZE >= sizeof(T*), "ALIGNED_SIZE"); static_assert(0 == (ALIGNED_SIZE % sizeof(T*)), "ALIGNED_SIZE mod"); static_assert(ALIGNMENT >= sizeof(T*), "ALIGNMENT"); T* mHead{nullptr}; T** mListForFree{nullptr}; }; template <typename T, size_t MinSize, size_t MaxSize, bool IsFlat> struct NodeAllocator; // dummy allocator that does nothing template <typename T, size_t MinSize, size_t MaxSize> struct NodeAllocator<T, MinSize, MaxSize, true> { // we are not using the data, so just free it. void addOrFree(void* ptr, size_t ROBIN_HOOD_UNUSED(numBytes) /*unused*/) noexcept { ROBIN_HOOD_LOG("std::free") std::free(ptr); } }; template <typename T, size_t MinSize, size_t MaxSize> struct NodeAllocator<T, MinSize, MaxSize, false> : public BulkPoolAllocator<T, MinSize, MaxSize> {}; // c++14 doesn't have is_nothrow_swappable, and clang++ 6.0.1 doesn't like it either, so I'm making // my own here. namespace swappable { #if ROBIN_HOOD(CXX) < ROBIN_HOOD(CXX17) using std::swap; template <typename T> struct nothrow { static const bool value = noexcept(swap(std::declval<T&>(), std::declval<T&>())); }; #else template <typename T> struct nothrow { static const bool value = std::is_nothrow_swappable<T>::value; }; #endif } // namespace swappable } // namespace detail struct is_transparent_tag {}; // A custom pair implementation is used in the map because std::pair is not is_trivially_copyable, // which means it would not be allowed to be used in std::memcpy. This struct is copyable, which is // also tested. template <typename T1, typename T2> struct pair { using first_type = T1; using second_type = T2; template <typename U1 = T1, typename U2 = T2, typename = typename std::enable_if<std::is_default_constructible<U1>::value && std::is_default_constructible<U2>::value>::type> constexpr pair() noexcept(noexcept(U1()) && noexcept(U2())) : first() , second() {} // pair constructors are explicit so we don't accidentally call this ctor when we don't have to. explicit constexpr pair(std::pair<T1, T2> const& o) noexcept( noexcept(T1(std::declval<T1 const&>())) && noexcept(T2(std::declval<T2 const&>()))) : first(o.first) , second(o.second) {} // pair constructors are explicit so we don't accidentally call this ctor when we don't have to. explicit constexpr pair(std::pair<T1, T2>&& o) noexcept(noexcept( T1(std::move(std::declval<T1&&>()))) && noexcept(T2(std::move(std::declval<T2&&>())))) : first(std::move(o.first)) , second(std::move(o.second)) {} constexpr pair(T1&& a, T2&& b) noexcept(noexcept( T1(std::move(std::declval<T1&&>()))) && noexcept(T2(std::move(std::declval<T2&&>())))) : first(std::move(a)) , second(std::move(b)) {} template <typename U1, typename U2> constexpr pair(U1&& a, U2&& b) noexcept(noexcept(T1(std::forward<U1>( std::declval<U1&&>()))) && noexcept(T2(std::forward<U2>(std::declval<U2&&>())))) : first(std::forward<U1>(a)) , second(std::forward<U2>(b)) {} template <typename... U1, typename... U2> // MSVC 2015 produces error "C2476: ‘constexpr’ constructor does not initialize all members" // if this constructor is constexpr #if !ROBIN_HOOD(BROKEN_CONSTEXPR) constexpr #endif pair(std::piecewise_construct_t /*unused*/, std::tuple<U1...> a, std::tuple<U2...> b) noexcept(noexcept(pair(std::declval<std::tuple<U1...>&>(), std::declval<std::tuple<U2...>&>(), ROBIN_HOOD_STD::index_sequence_for<U1...>(), ROBIN_HOOD_STD::index_sequence_for<U2...>()))) : pair(a, b, ROBIN_HOOD_STD::index_sequence_for<U1...>(), ROBIN_HOOD_STD::index_sequence_for<U2...>()) { } // constructor called from the std::piecewise_construct_t ctor template <typename... U1, size_t... I1, typename... U2, size_t... I2> pair(std::tuple<U1...>& a, std::tuple<U2...>& b, ROBIN_HOOD_STD::index_sequence<I1...> /*unused*/, ROBIN_HOOD_STD::index_sequence<I2...> /*unused*/) noexcept( noexcept(T1(std::forward<U1>(std::get<I1>( std::declval<std::tuple< U1...>&>()))...)) && noexcept(T2(std:: forward<U2>(std::get<I2>( std::declval<std::tuple<U2...>&>()))...))) : first(std::forward<U1>(std::get<I1>(a))...) , second(std::forward<U2>(std::get<I2>(b))...) { // make visual studio compiler happy about warning about unused a & b. // Visual studio's pair implementation disables warning 4100. (void)a; (void)b; } void swap(pair<T1, T2>& o) noexcept((detail::swappable::nothrow<T1>::value) && (detail::swappable::nothrow<T2>::value)) { using std::swap; swap(first, o.first); swap(second, o.second); } T1 first; // NOLINT(misc-non-private-member-variables-in-classes) T2 second; // NOLINT(misc-non-private-member-variables-in-classes) }; template <typename A, typename B> inline void swap(pair<A, B>& a, pair<A, B>& b) noexcept( noexcept(std::declval<pair<A, B>&>().swap(std::declval<pair<A, B>&>()))) { a.swap(b); } template <typename A, typename B> inline constexpr bool operator==(pair<A, B> const& x, pair<A, B> const& y) { return (x.first == y.first) && (x.second == y.second); } template <typename A, typename B> inline constexpr bool operator!=(pair<A, B> const& x, pair<A, B> const& y) { return !(x == y); } template <typename A, typename B> inline constexpr bool operator<(pair<A, B> const& x, pair<A, B> const& y) noexcept(noexcept( std::declval<A const&>() < std::declval<A const&>()) && noexcept(std::declval<B const&>() < std::declval<B const&>())) { return x.first < y.first || (!(y.first < x.first) && x.second < y.second); } template <typename A, typename B> inline constexpr bool operator>(pair<A, B> const& x, pair<A, B> const& y) { return y < x; } template <typename A, typename B> inline constexpr bool operator<=(pair<A, B> const& x, pair<A, B> const& y) { return !(x > y); } template <typename A, typename B> inline constexpr bool operator>=(pair<A, B> const& x, pair<A, B> const& y) { return !(x < y); } inline size_t hash_bytes(void const* ptr, size_t len) noexcept { static constexpr uint64_t m = UINT64_C(0xc6a4a7935bd1e995); static constexpr uint64_t seed = UINT64_C(0xe17a1465); static constexpr unsigned int r = 47; auto const* const data64 = static_cast<uint64_t const*>(ptr); uint64_t h = seed ^ (len * m); size_t const n_blocks = len / 8; for (size_t i = 0; i < n_blocks; ++i) { auto k = detail::unaligned_load<uint64_t>(data64 + i); k *= m; k ^= k >> r; k *= m; h ^= k; h *= m; } auto const* const data8 = reinterpret_cast<uint8_t const*>(data64 + n_blocks); switch (len & 7U) { case 7: h ^= static_cast<uint64_t>(data8[6]) << 48U; ROBIN_HOOD(FALLTHROUGH); // FALLTHROUGH case 6: h ^= static_cast<uint64_t>(data8[5]) << 40U; ROBIN_HOOD(FALLTHROUGH); // FALLTHROUGH case 5: h ^= static_cast<uint64_t>(data8[4]) << 32U; ROBIN_HOOD(FALLTHROUGH); // FALLTHROUGH case 4: h ^= static_cast<uint64_t>(data8[3]) << 24U; ROBIN_HOOD(FALLTHROUGH); // FALLTHROUGH case 3: h ^= static_cast<uint64_t>(data8[2]) << 16U; ROBIN_HOOD(FALLTHROUGH); // FALLTHROUGH case 2: h ^= static_cast<uint64_t>(data8[1]) << 8U; ROBIN_HOOD(FALLTHROUGH); // FALLTHROUGH case 1: h ^= static_cast<uint64_t>(data8[0]); h *= m; ROBIN_HOOD(FALLTHROUGH); // FALLTHROUGH default: break; } h ^= h >> r; // not doing the final step here, because this will be done by keyToIdx anyways // h *= m; // h ^= h >> r; return static_cast<size_t>(h); } inline size_t hash_int(uint64_t x) noexcept { // tried lots of different hashes, let's stick with murmurhash3. It's simple, fast, well tested, // and doesn't need any special 128bit operations. x ^= x >> 33U; x *= UINT64_C(0xff51afd7ed558ccd); x ^= x >> 33U; // not doing the final step here, because this will be done by keyToIdx anyways // x *= UINT64_C(0xc4ceb9fe1a85ec53); // x ^= x >> 33U; return static_cast<size_t>(x); } // A thin wrapper around std::hash, performing an additional simple mixing step of the result. template <typename T, typename Enable = void> struct hash : public std::hash<T> { size_t operator()(T const& obj) const noexcept(noexcept(std::declval<std::hash<T>>().operator()(std::declval<T const&>()))) { // call base hash auto result = std::hash<T>::operator()(obj); // return mixed of that, to be save against identity has return hash_int(static_cast<detail::SizeT>(result)); } }; template <typename CharT> struct hash<std::basic_string<CharT>> { size_t operator()(std::basic_string<CharT> const& str) const noexcept { return hash_bytes(str.data(), sizeof(CharT) * str.size()); } }; #if ROBIN_HOOD(CXX) >= ROBIN_HOOD(CXX17) template <typename CharT> struct hash<std::basic_string_view<CharT>> { size_t operator()(std::basic_string_view<CharT> const& sv) const noexcept { return hash_bytes(sv.data(), sizeof(CharT) * sv.size()); } }; #endif template <class T> struct hash<T*> { size_t operator()(T* ptr) const noexcept { return hash_int(reinterpret_cast<detail::SizeT>(ptr)); } }; template <class T> struct hash<std::unique_ptr<T>> { size_t operator()(std::unique_ptr<T> const& ptr) const noexcept { return hash_int(reinterpret_cast<detail::SizeT>(ptr.get())); } }; template <class T> struct hash<std::shared_ptr<T>> { size_t operator()(std::shared_ptr<T> const& ptr) const noexcept { return hash_int(reinterpret_cast<detail::SizeT>(ptr.get())); } }; template <typename Enum> struct hash<Enum, typename std::enable_if<std::is_enum<Enum>::value>::type> { size_t operator()(Enum e) const noexcept { using Underlying = typename std::underlying_type<Enum>::type; return hash<Underlying>{}(static_cast<Underlying>(e)); } }; #define ROBIN_HOOD_HASH_INT(T) \ template <> \ struct hash<T> { \ size_t operator()(T const& obj) const noexcept { \ return hash_int(static_cast<uint64_t>(obj)); \ } \ } #if defined(__GNUC__) && !defined(__clang__) # pragma GCC diagnostic push # pragma GCC diagnostic ignored "-Wuseless-cast" #endif // see https://en.cppreference.com/w/cpp/utility/hash ROBIN_HOOD_HASH_INT(bool); ROBIN_HOOD_HASH_INT(char); ROBIN_HOOD_HASH_INT(signed char); ROBIN_HOOD_HASH_INT(unsigned char); ROBIN_HOOD_HASH_INT(char16_t); ROBIN_HOOD_HASH_INT(char32_t); #if ROBIN_HOOD(HAS_NATIVE_WCHART) ROBIN_HOOD_HASH_INT(wchar_t); #endif ROBIN_HOOD_HASH_INT(short); ROBIN_HOOD_HASH_INT(unsigned short); ROBIN_HOOD_HASH_INT(int); ROBIN_HOOD_HASH_INT(unsigned int); ROBIN_HOOD_HASH_INT(long); ROBIN_HOOD_HASH_INT(long long); ROBIN_HOOD_HASH_INT(unsigned long); ROBIN_HOOD_HASH_INT(unsigned long long); #if defined(__GNUC__) && !defined(__clang__) # pragma GCC diagnostic pop #endif namespace detail { template <typename T> struct void_type { using type = void; }; template <typename T, typename = void> struct has_is_transparent : public std::false_type {}; template <typename T> struct has_is_transparent<T, typename void_type<typename T::is_transparent>::type> : public std::true_type {}; // using wrapper classes for hash and key_equal prevents the diamond problem when the same type // is used. see https://stackoverflow.com/a/28771920/48181 template <typename T> struct WrapHash : public T { WrapHash() = default; explicit WrapHash(T const& o) noexcept(noexcept(T(std::declval<T const&>()))) : T(o) {} }; template <typename T> struct WrapKeyEqual : public T { WrapKeyEqual() = default; explicit WrapKeyEqual(T const& o) noexcept(noexcept(T(std::declval<T const&>()))) : T(o) {} }; // A highly optimized hashmap implementation, using the Robin Hood algorithm. // // In most cases, this map should be usable as a drop-in replacement for std::unordered_map, but // be about 2x faster in most cases and require much less allocations. // // This implementation uses the following memory layout: // // [Node, Node, ... Node | info, info, ... infoSentinel ] // // * Node: either a DataNode that directly has the std::pair<key, val> as member, // or a DataNode with a pointer to std::pair<key,val>. Which DataNode representation to use // depends on how fast the swap() operation is. Heuristically, this is automatically choosen // based on sizeof(). there are always 2^n Nodes. // // * info: Each Node in the map has a corresponding info byte, so there are 2^n info bytes. // Each byte is initialized to 0, meaning the corresponding Node is empty. Set to 1 means the // corresponding node contains data. Set to 2 means the corresponding Node is filled, but it // actually belongs to the previous position and was pushed out because that place is already // taken. // // * infoSentinel: Sentinel byte set to 1, so that iterator's ++ can stop at end() without the // need for a idx variable. // // According to STL, order of templates has effect on throughput. That's why I've moved the // boolean to the front. // https://www.reddit.com/r/cpp/comments/ahp6iu/compile_time_binary_size_reductions_and_cs_future/eeguck4/ template <bool IsFlat, size_t MaxLoadFactor100, typename Key, typename T, typename Hash, typename KeyEqual> class Table : public WrapHash<Hash>, public WrapKeyEqual<KeyEqual>, detail::NodeAllocator< typename std::conditional< std::is_void<T>::value, Key, robin_hood::pair<typename std::conditional<IsFlat, Key, Key const>::type, T>>::type, 4, 16384, IsFlat> { public: static constexpr bool is_flat = IsFlat; static constexpr bool is_map = !std::is_void<T>::value; static constexpr bool is_set = !is_map; static constexpr bool is_transparent = has_is_transparent<Hash>::value && has_is_transparent<KeyEqual>::value; using key_type = Key; using mapped_type = T; using value_type = typename std::conditional< is_set, Key, robin_hood::pair<typename std::conditional<is_flat, Key, Key const>::type, T>>::type; using size_type = size_t; using hasher = Hash; using key_equal = KeyEqual; using Self = Table<IsFlat, MaxLoadFactor100, key_type, mapped_type, hasher, key_equal>; private: static_assert(MaxLoadFactor100 > 10 && MaxLoadFactor100 < 100, "MaxLoadFactor100 needs to be >10 && < 100"); using WHash = WrapHash<Hash>; using WKeyEqual = WrapKeyEqual<KeyEqual>; // configuration defaults // make sure we have 8 elements, needed to quickly rehash mInfo static constexpr size_t InitialNumElements = sizeof(uint64_t); static constexpr uint32_t InitialInfoNumBits = 5; static constexpr uint8_t InitialInfoInc = 1U << InitialInfoNumBits; static constexpr size_t InfoMask = InitialInfoInc - 1U; static constexpr uint8_t InitialInfoHashShift = 0; using DataPool = detail::NodeAllocator<value_type, 4, 16384, IsFlat>; // type needs to be wider than uint8_t. using InfoType = uint32_t; // DataNode //////////////////////////////////////////////////////// // Primary template for the data node. We have special implementations for small and big // objects. For large objects it is assumed that swap() is fairly slow, so we allocate these // on the heap so swap merely swaps a pointer. template <typename M, bool> class DataNode {}; // Small: just allocate on the stack. template <typename M> class DataNode<M, true> final { public: template <typename... Args> explicit DataNode(M& ROBIN_HOOD_UNUSED(map) /*unused*/, Args&&... args) noexcept( noexcept(value_type(std::forward<Args>(args)...))) : mData(std::forward<Args>(args)...) {} DataNode(M& ROBIN_HOOD_UNUSED(map) /*unused*/, DataNode<M, true>&& n) noexcept( std::is_nothrow_move_constructible<value_type>::value) : mData(std::move(n.mData)) {} // doesn't do anything void destroy(M& ROBIN_HOOD_UNUSED(map) /*unused*/) noexcept {} void destroyDoNotDeallocate() noexcept {} value_type const* operator->() const noexcept { return &mData; } value_type* operator->() noexcept { return &mData; } const value_type& operator*() const noexcept { return mData; } value_type& operator*() noexcept { return mData; } template <typename VT = value_type> ROBIN_HOOD(NODISCARD) typename std::enable_if<is_map, typename VT::first_type&>::type getFirst() noexcept { return mData.first; } template <typename VT = value_type> ROBIN_HOOD(NODISCARD) typename std::enable_if<is_set, VT&>::type getFirst() noexcept { return mData; } template <typename VT = value_type> ROBIN_HOOD(NODISCARD) typename std::enable_if<is_map, typename VT::first_type const&>::type getFirst() const noexcept { return mData.first; } template <typename VT = value_type> ROBIN_HOOD(NODISCARD) typename std::enable_if<is_set, VT const&>::type getFirst() const noexcept { return mData; } template <typename MT = mapped_type> ROBIN_HOOD(NODISCARD) typename std::enable_if<is_map, MT&>::type getSecond() noexcept { return mData.second; } template <typename MT = mapped_type> ROBIN_HOOD(NODISCARD) typename std::enable_if<is_set, MT const&>::type getSecond() const noexcept { return mData.second; } void swap(DataNode<M, true>& o) noexcept( noexcept(std::declval<value_type>().swap(std::declval<value_type>()))) { mData.swap(o.mData); } private: value_type mData; }; // big object: allocate on heap. template <typename M> class DataNode<M, false> { public: template <typename... Args> explicit DataNode(M& map, Args&&... args) : mData(map.allocate()) { ::new (static_cast<void*>(mData)) value_type(std::forward<Args>(args)...); } DataNode(M& ROBIN_HOOD_UNUSED(map) /*unused*/, DataNode<M, false>&& n) noexcept : mData(std::move(n.mData)) {} void destroy(M& map) noexcept { // don't deallocate, just put it into list of datapool. mData->~value_type(); map.deallocate(mData); } void destroyDoNotDeallocate() noexcept { mData->~value_type(); } value_type const* operator->() const noexcept { return mData; } value_type* operator->() noexcept { return mData; } const value_type& operator*() const { return *mData; } value_type& operator*() { return *mData; } template <typename VT = value_type> ROBIN_HOOD(NODISCARD) typename std::enable_if<is_map, typename VT::first_type&>::type getFirst() noexcept { return mData->first; } template <typename VT = value_type> ROBIN_HOOD(NODISCARD) typename std::enable_if<is_set, VT&>::type getFirst() noexcept { return *mData; } template <typename VT = value_type> ROBIN_HOOD(NODISCARD) typename std::enable_if<is_map, typename VT::first_type const&>::type getFirst() const noexcept { return mData->first; } template <typename VT = value_type> ROBIN_HOOD(NODISCARD) typename std::enable_if<is_set, VT const&>::type getFirst() const noexcept { return *mData; } template <typename MT = mapped_type> ROBIN_HOOD(NODISCARD) typename std::enable_if<is_map, MT&>::type getSecond() noexcept { return mData->second; } template <typename MT = mapped_type> ROBIN_HOOD(NODISCARD) typename std::enable_if<is_map, MT const&>::type getSecond() const noexcept { return mData->second; } void swap(DataNode<M, false>& o) noexcept { using std::swap; swap(mData, o.mData); } private: value_type* mData; }; using Node = DataNode<Self, IsFlat>; // helpers for insertKeyPrepareEmptySpot: extract first entry (only const required) ROBIN_HOOD(NODISCARD) key_type const& getFirstConst(Node const& n) const noexcept { return n.getFirst(); } // in case we have void mapped_type, we are not using a pair, thus we just route k through. // No need to disable this because it's just not used if not applicable. ROBIN_HOOD(NODISCARD) key_type const& getFirstConst(key_type const& k) const noexcept { return k; } // in case we have non-void mapped_type, we have a standard robin_hood::pair template <typename Q = mapped_type> ROBIN_HOOD(NODISCARD) typename std::enable_if<!std::is_void<Q>::value, key_type const&>::type getFirstConst(value_type const& vt) const noexcept { return vt.first; } // Cloner ////////////////////////////////////////////////////////// template <typename M, bool UseMemcpy> struct Cloner; // fast path: Just copy data, without allocating anything. template <typename M> struct Cloner<M, true> { void operator()(M const& source, M& target) const { auto const* const src = reinterpret_cast<char const*>(source.mKeyVals); auto* tgt = reinterpret_cast<char*>(target.mKeyVals); auto const numElementsWithBuffer = target.calcNumElementsWithBuffer(target.mMask + 1); std::copy(src, src + target.calcNumBytesTotal(numElementsWithBuffer), tgt); } }; template <typename M> struct Cloner<M, false> { void operator()(M const& s, M& t) const { auto const numElementsWithBuffer = t.calcNumElementsWithBuffer(t.mMask + 1); std::copy(s.mInfo, s.mInfo + t.calcNumBytesInfo(numElementsWithBuffer), t.mInfo); for (size_t i = 0; i < numElementsWithBuffer; ++i) { if (t.mInfo[i]) { ::new (static_cast<void*>(t.mKeyVals + i)) Node(t, *s.mKeyVals[i]); } } } }; // Destroyer /////////////////////////////////////////////////////// template <typename M, bool IsFlatAndTrivial> struct Destroyer {}; template <typename M> struct Destroyer<M, true> { void nodes(M& m) const noexcept { m.mNumElements = 0; } void nodesDoNotDeallocate(M& m) const noexcept { m.mNumElements = 0; } }; template <typename M> struct Destroyer<M, false> { void nodes(M& m) const noexcept { m.mNumElements = 0; // clear also resets mInfo to 0, that's sometimes not necessary. auto const numElementsWithBuffer = m.calcNumElementsWithBuffer(m.mMask + 1); for (size_t idx = 0; idx < numElementsWithBuffer; ++idx) { if (0 != m.mInfo[idx]) { Node& n = m.mKeyVals[idx]; n.destroy(m); n.~Node(); } } } void nodesDoNotDeallocate(M& m) const noexcept { m.mNumElements = 0; // clear also resets mInfo to 0, that's sometimes not necessary. auto const numElementsWithBuffer = m.calcNumElementsWithBuffer(m.mMask + 1); for (size_t idx = 0; idx < numElementsWithBuffer; ++idx) { if (0 != m.mInfo[idx]) { Node& n = m.mKeyVals[idx]; n.destroyDoNotDeallocate(); n.~Node(); } } } }; // Iter //////////////////////////////////////////////////////////// struct fast_forward_tag {}; // generic iterator for both const_iterator and iterator. template <bool IsConst> // NOLINTNEXTLINE(hicpp-special-member-functions,cppcoreguidelines-special-member-functions) class Iter { private: using NodePtr = typename std::conditional<IsConst, Node const*, Node*>::type; public: using difference_type = std::ptrdiff_t; using value_type = typename Self::value_type; using reference = typename std::conditional<IsConst, value_type const&, value_type&>::type; using pointer = typename std::conditional<IsConst, value_type const*, value_type*>::type; using iterator_category = std::forward_iterator_tag; // default constructed iterator can be compared to itself, but WON'T return true when // compared to end(). Iter() = default; // Rule of zero: nothing specified. The conversion constructor is only enabled for // iterator to const_iterator, so it doesn't accidentally work as a copy ctor. // Conversion constructor from iterator to const_iterator. template <bool OtherIsConst, typename = typename std::enable_if<IsConst && !OtherIsConst>::type> // NOLINTNEXTLINE(hicpp-explicit-conversions) Iter(Iter<OtherIsConst> const& other) noexcept : mKeyVals(other.mKeyVals) , mInfo(other.mInfo) {} Iter(NodePtr valPtr, uint8_t const* infoPtr) noexcept : mKeyVals(valPtr) , mInfo(infoPtr) {} Iter(NodePtr valPtr, uint8_t const* infoPtr, fast_forward_tag ROBIN_HOOD_UNUSED(tag) /*unused*/) noexcept : mKeyVals(valPtr) , mInfo(infoPtr) { fastForward(); } template <bool OtherIsConst, typename = typename std::enable_if<IsConst && !OtherIsConst>::type> Iter& operator=(Iter<OtherIsConst> const& other) noexcept { mKeyVals = other.mKeyVals; mInfo = other.mInfo; return *this; } // prefix increment. Undefined behavior if we are at end()! Iter& operator++() noexcept { mInfo++; mKeyVals++; fastForward(); return *this; } Iter operator++(int) noexcept { Iter tmp = *this; ++(*this); return tmp; } reference operator*() const { return **mKeyVals; } pointer operator->() const { return &**mKeyVals; } template <bool O> bool operator==(Iter<O> const& o) const noexcept { return mKeyVals == o.mKeyVals; } template <bool O> bool operator!=(Iter<O> const& o) const noexcept { return mKeyVals != o.mKeyVals; } private: // fast forward to the next non-free info byte // I've tried a few variants that don't depend on intrinsics, but unfortunately they are // quite a bit slower than this one. So I've reverted that change again. See map_benchmark. void fastForward() noexcept { size_t n = 0; while (0U == (n = detail::unaligned_load<size_t>(mInfo))) { mInfo += sizeof(size_t); mKeyVals += sizeof(size_t); } #if defined(ROBIN_HOOD_DISABLE_INTRINSICS) // we know for certain that within the next 8 bytes we'll find a non-zero one. if (ROBIN_HOOD_UNLIKELY(0U == detail::unaligned_load<uint32_t>(mInfo))) { mInfo += 4; mKeyVals += 4; } if (ROBIN_HOOD_UNLIKELY(0U == detail::unaligned_load<uint16_t>(mInfo))) { mInfo += 2; mKeyVals += 2; } if (ROBIN_HOOD_UNLIKELY(0U == *mInfo)) { mInfo += 1; mKeyVals += 1; } #else # if ROBIN_HOOD(LITTLE_ENDIAN) auto inc = ROBIN_HOOD_COUNT_TRAILING_ZEROES(n) / 8; # else auto inc = ROBIN_HOOD_COUNT_LEADING_ZEROES(n) / 8; # endif mInfo += inc; mKeyVals += inc; #endif } friend class Table<IsFlat, MaxLoadFactor100, key_type, mapped_type, hasher, key_equal>; NodePtr mKeyVals{nullptr}; uint8_t const* mInfo{nullptr}; }; //////////////////////////////////////////////////////////////////// // highly performance relevant code. // Lower bits are used for indexing into the array (2^n size) // The upper 1-5 bits need to be a reasonable good hash, to save comparisons. template <typename HashKey> void keyToIdx(HashKey&& key, size_t* idx, InfoType* info) const { // In addition to whatever hash is used, add another mul & shift so we get better hashing. // This serves as a bad hash prevention, if the given data is // badly mixed. auto h = static_cast<uint64_t>(WHash::operator()(key)); h *= mHashMultiplier; h ^= h >> 33U; // the lower InitialInfoNumBits are reserved for info. *info = mInfoInc + static_cast<InfoType>((h & InfoMask) >> mInfoHashShift); *idx = (static_cast<size_t>(h) >> InitialInfoNumBits) & mMask; } // forwards the index by one, wrapping around at the end void next(InfoType* info, size_t* idx) const noexcept { *idx = *idx + 1; *info += mInfoInc; } void nextWhileLess(InfoType* info, size_t* idx) const noexcept { // unrolling this by hand did not bring any speedups. while (*info < mInfo[*idx]) { next(info, idx); } } // Shift everything up by one element. Tries to move stuff around. void shiftUp(size_t startIdx, size_t const insertion_idx) noexcept(std::is_nothrow_move_assignable<Node>::value) { auto idx = startIdx; ::new (static_cast<void*>(mKeyVals + idx)) Node(std::move(mKeyVals[idx - 1])); while (--idx != insertion_idx) { mKeyVals[idx] = std::move(mKeyVals[idx - 1]); } idx = startIdx; while (idx != insertion_idx) { ROBIN_HOOD_COUNT(shiftUp) mInfo[idx] = static_cast<uint8_t>(mInfo[idx - 1] + mInfoInc); if (ROBIN_HOOD_UNLIKELY(mInfo[idx] + mInfoInc > 0xFF)) { mMaxNumElementsAllowed = 0; } --idx; } } void shiftDown(size_t idx) noexcept(std::is_nothrow_move_assignable<Node>::value) { // until we find one that is either empty or has zero offset. // TODO(martinus) we don't need to move everything, just the last one for the same // bucket. mKeyVals[idx].destroy(*this); // until we find one that is either empty or has zero offset. while (mInfo[idx + 1] >= 2 * mInfoInc) { ROBIN_HOOD_COUNT(shiftDown) mInfo[idx] = static_cast<uint8_t>(mInfo[idx + 1] - mInfoInc); mKeyVals[idx] = std::move(mKeyVals[idx + 1]); ++idx; } mInfo[idx] = 0; // don't destroy, we've moved it // mKeyVals[idx].destroy(*this); mKeyVals[idx].~Node(); } // copy of find(), except that it returns iterator instead of const_iterator. template <typename Other> ROBIN_HOOD(NODISCARD) size_t findIdx(Other const& key) const { size_t idx{}; InfoType info{}; keyToIdx(key, &idx, &info); do { // unrolling this twice gives a bit of a speedup. More unrolling did not help. if (info == mInfo[idx] && ROBIN_HOOD_LIKELY(WKeyEqual::operator()(key, mKeyVals[idx].getFirst()))) { return idx; } next(&info, &idx); if (info == mInfo[idx] && ROBIN_HOOD_LIKELY(WKeyEqual::operator()(key, mKeyVals[idx].getFirst()))) { return idx; } next(&info, &idx); } while (info <= mInfo[idx]); // nothing found! return mMask == 0 ? 0 : static_cast<size_t>(std::distance( mKeyVals, reinterpret_cast_no_cast_align_warning<Node*>(mInfo))); } void cloneData(const Table& o) { Cloner<Table, IsFlat && ROBIN_HOOD_IS_TRIVIALLY_COPYABLE(Node)>()(o, *this); } // inserts a keyval that is guaranteed to be new, e.g. when the hashmap is resized. // @return True on success, false if something went wrong void insert_move(Node&& keyval) { // we don't retry, fail if overflowing // don't need to check max num elements if (0 == mMaxNumElementsAllowed && !try_increase_info()) { throwOverflowError(); } size_t idx{}; InfoType info{}; keyToIdx(keyval.getFirst(), &idx, &info); // skip forward. Use <= because we are certain that the element is not there. while (info <= mInfo[idx]) { idx = idx + 1; info += mInfoInc; } // key not found, so we are now exactly where we want to insert it. auto const insertion_idx = idx; auto const insertion_info = static_cast<uint8_t>(info); if (ROBIN_HOOD_UNLIKELY(insertion_info + mInfoInc > 0xFF)) { mMaxNumElementsAllowed = 0; } // find an empty spot while (0 != mInfo[idx]) { next(&info, &idx); } auto& l = mKeyVals[insertion_idx]; if (idx == insertion_idx) { ::new (static_cast<void*>(&l)) Node(std::move(keyval)); } else { shiftUp(idx, insertion_idx); l = std::move(keyval); } // put at empty spot mInfo[insertion_idx] = insertion_info; ++mNumElements; } public: using iterator = Iter<false>; using const_iterator = Iter<true>; Table() noexcept(noexcept(Hash()) && noexcept(KeyEqual())) : WHash() , WKeyEqual() { ROBIN_HOOD_TRACE(this) } // Creates an empty hash map. Nothing is allocated yet, this happens at the first insert. // This tremendously speeds up ctor & dtor of a map that never receives an element. The // penalty is payed at the first insert, and not before. Lookup of this empty map works // because everybody points to DummyInfoByte::b. parameter bucket_count is dictated by the // standard, but we can ignore it. explicit Table( size_t ROBIN_HOOD_UNUSED(bucket_count) /*unused*/, const Hash& h = Hash{}, const KeyEqual& equal = KeyEqual{}) noexcept(noexcept(Hash(h)) && noexcept(KeyEqual(equal))) : WHash(h) , WKeyEqual(equal) { ROBIN_HOOD_TRACE(this) } template <typename Iter> Table(Iter first, Iter last, size_t ROBIN_HOOD_UNUSED(bucket_count) /*unused*/ = 0, const Hash& h = Hash{}, const KeyEqual& equal = KeyEqual{}) : WHash(h) , WKeyEqual(equal) { ROBIN_HOOD_TRACE(this) insert(first, last); } Table(std::initializer_list<value_type> initlist, size_t ROBIN_HOOD_UNUSED(bucket_count) /*unused*/ = 0, const Hash& h = Hash{}, const KeyEqual& equal = KeyEqual{}) : WHash(h) , WKeyEqual(equal) { ROBIN_HOOD_TRACE(this) insert(initlist.begin(), initlist.end()); } Table(Table&& o) noexcept : WHash(std::move(static_cast<WHash&>(o))) , WKeyEqual(std::move(static_cast<WKeyEqual&>(o))) , DataPool(std::move(static_cast<DataPool&>(o))) { ROBIN_HOOD_TRACE(this) if (o.mMask) { mHashMultiplier = std::move(o.mHashMultiplier); mKeyVals = std::move(o.mKeyVals); mInfo = std::move(o.mInfo); mNumElements = std::move(o.mNumElements); mMask = std::move(o.mMask); mMaxNumElementsAllowed = std::move(o.mMaxNumElementsAllowed); mInfoInc = std::move(o.mInfoInc); mInfoHashShift = std::move(o.mInfoHashShift); // set other's mask to 0 so its destructor won't do anything o.init(); } } Table& operator=(Table&& o) noexcept { ROBIN_HOOD_TRACE(this) if (&o != this) { if (o.mMask) { // only move stuff if the other map actually has some data destroy(); mHashMultiplier = std::move(o.mHashMultiplier); mKeyVals = std::move(o.mKeyVals); mInfo = std::move(o.mInfo); mNumElements = std::move(o.mNumElements); mMask = std::move(o.mMask); mMaxNumElementsAllowed = std::move(o.mMaxNumElementsAllowed); mInfoInc = std::move(o.mInfoInc); mInfoHashShift = std::move(o.mInfoHashShift); WHash::operator=(std::move(static_cast<WHash&>(o))); WKeyEqual::operator=(std::move(static_cast<WKeyEqual&>(o))); DataPool::operator=(std::move(static_cast<DataPool&>(o))); o.init(); } else { // nothing in the other map => just clear us. clear(); } } return *this; } Table(const Table& o) : WHash(static_cast<const WHash&>(o)) , WKeyEqual(static_cast<const WKeyEqual&>(o)) , DataPool(static_cast<const DataPool&>(o)) { ROBIN_HOOD_TRACE(this) if (!o.empty()) { // not empty: create an exact copy. it is also possible to just iterate through all // elements and insert them, but copying is probably faster. auto const numElementsWithBuffer = calcNumElementsWithBuffer(o.mMask + 1); auto const numBytesTotal = calcNumBytesTotal(numElementsWithBuffer); ROBIN_HOOD_LOG("std::malloc " << numBytesTotal << " = calcNumBytesTotal(" << numElementsWithBuffer << ")") mHashMultiplier = o.mHashMultiplier; mKeyVals = static_cast<Node*>( detail::assertNotNull<std::bad_alloc>(std::malloc(numBytesTotal))); // no need for calloc because clonData does memcpy mInfo = reinterpret_cast<uint8_t*>(mKeyVals + numElementsWithBuffer); mNumElements = o.mNumElements; mMask = o.mMask; mMaxNumElementsAllowed = o.mMaxNumElementsAllowed; mInfoInc = o.mInfoInc; mInfoHashShift = o.mInfoHashShift; cloneData(o); } } // Creates a copy of the given map. Copy constructor of each entry is used. // Not sure why clang-tidy thinks this doesn't handle self assignment, it does // NOLINTNEXTLINE(bugprone-unhandled-self-assignment,cert-oop54-cpp) Table& operator=(Table const& o) { ROBIN_HOOD_TRACE(this) if (&o == this) { // prevent assigning of itself return *this; } // we keep using the old allocator and not assign the new one, because we want to keep // the memory available. when it is the same size. if (o.empty()) { if (0 == mMask) { // nothing to do, we are empty too return *this; } // not empty: destroy what we have there // clear also resets mInfo to 0, that's sometimes not necessary. destroy(); init(); WHash::operator=(static_cast<const WHash&>(o)); WKeyEqual::operator=(static_cast<const WKeyEqual&>(o)); DataPool::operator=(static_cast<DataPool const&>(o)); return *this; } // clean up old stuff Destroyer<Self, IsFlat && std::is_trivially_destructible<Node>::value>{}.nodes(*this); if (mMask != o.mMask) { // no luck: we don't have the same array size allocated, so we need to realloc. if (0 != mMask) { // only deallocate if we actually have data! ROBIN_HOOD_LOG("std::free") std::free(mKeyVals); } auto const numElementsWithBuffer = calcNumElementsWithBuffer(o.mMask + 1); auto const numBytesTotal = calcNumBytesTotal(numElementsWithBuffer); ROBIN_HOOD_LOG("std::malloc " << numBytesTotal << " = calcNumBytesTotal(" << numElementsWithBuffer << ")") mKeyVals = static_cast<Node*>( detail::assertNotNull<std::bad_alloc>(std::malloc(numBytesTotal))); // no need for calloc here because cloneData performs a memcpy. mInfo = reinterpret_cast<uint8_t*>(mKeyVals + numElementsWithBuffer); // sentinel is set in cloneData } WHash::operator=(static_cast<const WHash&>(o)); WKeyEqual::operator=(static_cast<const WKeyEqual&>(o)); DataPool::operator=(static_cast<DataPool const&>(o)); mHashMultiplier = o.mHashMultiplier; mNumElements = o.mNumElements; mMask = o.mMask; mMaxNumElementsAllowed = o.mMaxNumElementsAllowed; mInfoInc = o.mInfoInc; mInfoHashShift = o.mInfoHashShift; cloneData(o); return *this; } // Swaps everything between the two maps. void swap(Table& o) { ROBIN_HOOD_TRACE(this) using std::swap; swap(o, *this); } // Clears all data, without resizing. void clear() { ROBIN_HOOD_TRACE(this) if (empty()) { // don't do anything! also important because we don't want to write to // DummyInfoByte::b, even though we would just write 0 to it. return; } Destroyer<Self, IsFlat && std::is_trivially_destructible<Node>::value>{}.nodes(*this); auto const numElementsWithBuffer = calcNumElementsWithBuffer(mMask + 1); // clear everything, then set the sentinel again uint8_t const z = 0; std::fill(mInfo, mInfo + calcNumBytesInfo(numElementsWithBuffer), z); mInfo[numElementsWithBuffer] = 1; mInfoInc = InitialInfoInc; mInfoHashShift = InitialInfoHashShift; } // Destroys the map and all it's contents. ~Table() { ROBIN_HOOD_TRACE(this) destroy(); } // Checks if both tables contain the same entries. Order is irrelevant. bool operator==(const Table& other) const { ROBIN_HOOD_TRACE(this) if (other.size() != size()) { return false; } for (auto const& otherEntry : other) { if (!has(otherEntry)) { return false; } } return true; } bool operator!=(const Table& other) const { ROBIN_HOOD_TRACE(this) return !operator==(other); } template <typename Q = mapped_type> typename std::enable_if<!std::is_void<Q>::value, Q&>::type operator[](const key_type& key) { ROBIN_HOOD_TRACE(this) auto idxAndState = insertKeyPrepareEmptySpot(key); switch (idxAndState.second) { case InsertionState::key_found: break; case InsertionState::new_node: ::new (static_cast<void*>(&mKeyVals[idxAndState.first])) Node(*this, std::piecewise_construct, std::forward_as_tuple(key), std::forward_as_tuple()); break; case InsertionState::overwrite_node: mKeyVals[idxAndState.first] = Node(*this, std::piecewise_construct, std::forward_as_tuple(key), std::forward_as_tuple()); break; case InsertionState::overflow_error: throwOverflowError(); } return mKeyVals[idxAndState.first].getSecond(); } template <typename Q = mapped_type> typename std::enable_if<!std::is_void<Q>::value, Q&>::type operator[](key_type&& key) { ROBIN_HOOD_TRACE(this) auto idxAndState = insertKeyPrepareEmptySpot(key); switch (idxAndState.second) { case InsertionState::key_found: break; case InsertionState::new_node: ::new (static_cast<void*>(&mKeyVals[idxAndState.first])) Node(*this, std::piecewise_construct, std::forward_as_tuple(std::move(key)), std::forward_as_tuple()); break; case InsertionState::overwrite_node: mKeyVals[idxAndState.first] = Node(*this, std::piecewise_construct, std::forward_as_tuple(std::move(key)), std::forward_as_tuple()); break; case InsertionState::overflow_error: throwOverflowError(); } return mKeyVals[idxAndState.first].getSecond(); } template <typename Iter> void insert(Iter first, Iter last) { for (; first != last; ++first) { // value_type ctor needed because this might be called with std::pair's insert(value_type(*first)); } } void insert(std::initializer_list<value_type> ilist) { for (auto&& vt : ilist) { insert(std::move(vt)); } } template <typename... Args> std::pair<iterator, bool> emplace(Args&&... args) { ROBIN_HOOD_TRACE(this) Node n{*this, std::forward<Args>(args)...}; auto idxAndState = insertKeyPrepareEmptySpot(getFirstConst(n)); switch (idxAndState.second) { case InsertionState::key_found: n.destroy(*this); break; case InsertionState::new_node: ::new (static_cast<void*>(&mKeyVals[idxAndState.first])) Node(*this, std::move(n)); break; case InsertionState::overwrite_node: mKeyVals[idxAndState.first] = std::move(n); break; case InsertionState::overflow_error: n.destroy(*this); throwOverflowError(); break; } return std::make_pair(iterator(mKeyVals + idxAndState.first, mInfo + idxAndState.first), InsertionState::key_found != idxAndState.second); } template <typename... Args> iterator emplace_hint(const_iterator position, Args&&... args) { (void)position; return emplace(std::forward<Args>(args)...).first; } template <typename... Args> std::pair<iterator, bool> try_emplace(const key_type& key, Args&&... args) { return try_emplace_impl(key, std::forward<Args>(args)...); } template <typename... Args> std::pair<iterator, bool> try_emplace(key_type&& key, Args&&... args) { return try_emplace_impl(std::move(key), std::forward<Args>(args)...); } template <typename... Args> iterator try_emplace(const_iterator hint, const key_type& key, Args&&... args) { (void)hint; return try_emplace_impl(key, std::forward<Args>(args)...).first; } template <typename... Args> iterator try_emplace(const_iterator hint, key_type&& key, Args&&... args) { (void)hint; return try_emplace_impl(std::move(key), std::forward<Args>(args)...).first; } template <typename Mapped> std::pair<iterator, bool> insert_or_assign(const key_type& key, Mapped&& obj) { return insertOrAssignImpl(key, std::forward<Mapped>(obj)); } template <typename Mapped> std::pair<iterator, bool> insert_or_assign(key_type&& key, Mapped&& obj) { return insertOrAssignImpl(std::move(key), std::forward<Mapped>(obj)); } template <typename Mapped> iterator insert_or_assign(const_iterator hint, const key_type& key, Mapped&& obj) { (void)hint; return insertOrAssignImpl(key, std::forward<Mapped>(obj)).first; } template <typename Mapped> iterator insert_or_assign(const_iterator hint, key_type&& key, Mapped&& obj) { (void)hint; return insertOrAssignImpl(std::move(key), std::forward<Mapped>(obj)).first; } std::pair<iterator, bool> insert(const value_type& keyval) { ROBIN_HOOD_TRACE(this) return emplace(keyval); } iterator insert(const_iterator hint, const value_type& keyval) { (void)hint; return emplace(keyval).first; } std::pair<iterator, bool> insert(value_type&& keyval) { return emplace(std::move(keyval)); } iterator insert(const_iterator hint, value_type&& keyval) { (void)hint; return emplace(std::move(keyval)).first; } // Returns 1 if key is found, 0 otherwise. size_t count(const key_type& key) const { // NOLINT(modernize-use-nodiscard) ROBIN_HOOD_TRACE(this) auto kv = mKeyVals + findIdx(key); if (kv != reinterpret_cast_no_cast_align_warning<Node*>(mInfo)) { return 1; } return 0; } template <typename OtherKey, typename Self_ = Self> // NOLINTNEXTLINE(modernize-use-nodiscard) typename std::enable_if<Self_::is_transparent, size_t>::type count(const OtherKey& key) const { ROBIN_HOOD_TRACE(this) auto kv = mKeyVals + findIdx(key); if (kv != reinterpret_cast_no_cast_align_warning<Node*>(mInfo)) { return 1; } return 0; } bool contains(const key_type& key) const { // NOLINT(modernize-use-nodiscard) return 1U == count(key); } template <typename OtherKey, typename Self_ = Self> // NOLINTNEXTLINE(modernize-use-nodiscard) typename std::enable_if<Self_::is_transparent, bool>::type contains(const OtherKey& key) const { return 1U == count(key); } // Returns a reference to the value found for key. // Throws std::out_of_range if element cannot be found template <typename Q = mapped_type> // NOLINTNEXTLINE(modernize-use-nodiscard) typename std::enable_if<!std::is_void<Q>::value, Q&>::type at(key_type const& key) { ROBIN_HOOD_TRACE(this) auto kv = mKeyVals + findIdx(key); if (kv == reinterpret_cast_no_cast_align_warning<Node*>(mInfo)) { doThrow<std::out_of_range>("key not found"); } return kv->getSecond(); } // Returns a reference to the value found for key. // Throws std::out_of_range if element cannot be found template <typename Q = mapped_type> // NOLINTNEXTLINE(modernize-use-nodiscard) typename std::enable_if<!std::is_void<Q>::value, Q const&>::type at(key_type const& key) const { ROBIN_HOOD_TRACE(this) auto kv = mKeyVals + findIdx(key); if (kv == reinterpret_cast_no_cast_align_warning<Node*>(mInfo)) { doThrow<std::out_of_range>("key not found"); } return kv->getSecond(); } const_iterator find(const key_type& key) const { // NOLINT(modernize-use-nodiscard) ROBIN_HOOD_TRACE(this) const size_t idx = findIdx(key); return const_iterator{mKeyVals + idx, mInfo + idx}; } template <typename OtherKey> const_iterator find(const OtherKey& key, is_transparent_tag /*unused*/) const { ROBIN_HOOD_TRACE(this) const size_t idx = findIdx(key); return const_iterator{mKeyVals + idx, mInfo + idx}; } template <typename OtherKey, typename Self_ = Self> typename std::enable_if<Self_::is_transparent, // NOLINT(modernize-use-nodiscard) const_iterator>::type // NOLINT(modernize-use-nodiscard) find(const OtherKey& key) const { // NOLINT(modernize-use-nodiscard) ROBIN_HOOD_TRACE(this) const size_t idx = findIdx(key); return const_iterator{mKeyVals + idx, mInfo + idx}; } iterator find(const key_type& key) { ROBIN_HOOD_TRACE(this) const size_t idx = findIdx(key); return iterator{mKeyVals + idx, mInfo + idx}; } template <typename OtherKey> iterator find(const OtherKey& key, is_transparent_tag /*unused*/) { ROBIN_HOOD_TRACE(this) const size_t idx = findIdx(key); return iterator{mKeyVals + idx, mInfo + idx}; } template <typename OtherKey, typename Self_ = Self> typename std::enable_if<Self_::is_transparent, iterator>::type find(const OtherKey& key) { ROBIN_HOOD_TRACE(this) const size_t idx = findIdx(key); return iterator{mKeyVals + idx, mInfo + idx}; } iterator begin() { ROBIN_HOOD_TRACE(this) if (empty()) { return end(); } return iterator(mKeyVals, mInfo, fast_forward_tag{}); } const_iterator begin() const { // NOLINT(modernize-use-nodiscard) ROBIN_HOOD_TRACE(this) return cbegin(); } const_iterator cbegin() const { // NOLINT(modernize-use-nodiscard) ROBIN_HOOD_TRACE(this) if (empty()) { return cend(); } return const_iterator(mKeyVals, mInfo, fast_forward_tag{}); } iterator end() { ROBIN_HOOD_TRACE(this) // no need to supply valid info pointer: end() must not be dereferenced, and only node // pointer is compared. return iterator{reinterpret_cast_no_cast_align_warning<Node*>(mInfo), nullptr}; } const_iterator end() const { // NOLINT(modernize-use-nodiscard) ROBIN_HOOD_TRACE(this) return cend(); } const_iterator cend() const { // NOLINT(modernize-use-nodiscard) ROBIN_HOOD_TRACE(this) return const_iterator{reinterpret_cast_no_cast_align_warning<Node*>(mInfo), nullptr}; } iterator erase(const_iterator pos) { ROBIN_HOOD_TRACE(this) // its safe to perform const cast here // NOLINTNEXTLINE(cppcoreguidelines-pro-type-const-cast) return erase(iterator{const_cast<Node*>(pos.mKeyVals), const_cast<uint8_t*>(pos.mInfo)}); } // Erases element at pos, returns iterator to the next element. iterator erase(iterator pos) { ROBIN_HOOD_TRACE(this) // we assume that pos always points to a valid entry, and not end(). auto const idx = static_cast<size_t>(pos.mKeyVals - mKeyVals); shiftDown(idx); --mNumElements; if (*pos.mInfo) { // we've backward shifted, return this again return pos; } // no backward shift, return next element return ++pos; } size_t erase(const key_type& key) { ROBIN_HOOD_TRACE(this) size_t idx{}; InfoType info{}; keyToIdx(key, &idx, &info); // check while info matches with the source idx do { if (info == mInfo[idx] && WKeyEqual::operator()(key, mKeyVals[idx].getFirst())) { shiftDown(idx); --mNumElements; return 1; } next(&info, &idx); } while (info <= mInfo[idx]); // nothing found to delete return 0; } // reserves space for the specified number of elements. Makes sure the old data fits. // exactly the same as reserve(c). void rehash(size_t c) { // forces a reserve reserve(c, true); } // reserves space for the specified number of elements. Makes sure the old data fits. // Exactly the same as rehash(c). Use rehash(0) to shrink to fit. void reserve(size_t c) { // reserve, but don't force rehash reserve(c, false); } // If possible reallocates the map to a smaller one. This frees the underlying table. // Does not do anything if load_factor is too large for decreasing the table's size. void compact() { ROBIN_HOOD_TRACE(this) auto newSize = InitialNumElements; while (calcMaxNumElementsAllowed(newSize) < mNumElements && newSize != 0) { newSize *= 2; } if (ROBIN_HOOD_UNLIKELY(newSize == 0)) { throwOverflowError(); } ROBIN_HOOD_LOG("newSize > mMask + 1: " << newSize << " > " << mMask << " + 1") // only actually do anything when the new size is bigger than the old one. This prevents to // continuously allocate for each reserve() call. if (newSize < mMask + 1) { rehashPowerOfTwo(newSize, true); } } size_type size() const noexcept { // NOLINT(modernize-use-nodiscard) ROBIN_HOOD_TRACE(this) return mNumElements; } size_type max_size() const noexcept { // NOLINT(modernize-use-nodiscard) ROBIN_HOOD_TRACE(this) return static_cast<size_type>(-1); } ROBIN_HOOD(NODISCARD) bool empty() const noexcept { ROBIN_HOOD_TRACE(this) return 0 == mNumElements; } float max_load_factor() const noexcept { // NOLINT(modernize-use-nodiscard) ROBIN_HOOD_TRACE(this) return MaxLoadFactor100 / 100.0F; } // Average number of elements per bucket. Since we allow only 1 per bucket float load_factor() const noexcept { // NOLINT(modernize-use-nodiscard) ROBIN_HOOD_TRACE(this) return static_cast<float>(size()) / static_cast<float>(mMask + 1); } ROBIN_HOOD(NODISCARD) size_t mask() const noexcept { ROBIN_HOOD_TRACE(this) return mMask; } ROBIN_HOOD(NODISCARD) size_t calcMaxNumElementsAllowed(size_t maxElements) const noexcept { if (ROBIN_HOOD_LIKELY(maxElements <= (std::numeric_limits<size_t>::max)() / 100)) { return maxElements * MaxLoadFactor100 / 100; } // we might be a bit inprecise, but since maxElements is quite large that doesn't matter return (maxElements / 100) * MaxLoadFactor100; } ROBIN_HOOD(NODISCARD) size_t calcNumBytesInfo(size_t numElements) const noexcept { // we add a uint64_t, which houses the sentinel (first byte) and padding so we can load // 64bit types. return numElements + sizeof(uint64_t); } ROBIN_HOOD(NODISCARD) size_t calcNumElementsWithBuffer(size_t numElements) const noexcept { auto maxNumElementsAllowed = calcMaxNumElementsAllowed(numElements); return numElements + (std::min)(maxNumElementsAllowed, (static_cast<size_t>(0xFF))); } // calculation only allowed for 2^n values ROBIN_HOOD(NODISCARD) size_t calcNumBytesTotal(size_t numElements) const { #if ROBIN_HOOD(BITNESS) == 64 return numElements * sizeof(Node) + calcNumBytesInfo(numElements); #else // make sure we're doing 64bit operations, so we are at least safe against 32bit overflows. auto const ne = static_cast<uint64_t>(numElements); auto const s = static_cast<uint64_t>(sizeof(Node)); auto const infos = static_cast<uint64_t>(calcNumBytesInfo(numElements)); auto const total64 = ne * s + infos; auto const total = static_cast<size_t>(total64); if (ROBIN_HOOD_UNLIKELY(static_cast<uint64_t>(total) != total64)) { throwOverflowError(); } return total; #endif } private: template <typename Q = mapped_type> ROBIN_HOOD(NODISCARD) typename std::enable_if<!std::is_void<Q>::value, bool>::type has(const value_type& e) const { ROBIN_HOOD_TRACE(this) auto it = find(e.first); return it != end() && it->second == e.second; } template <typename Q = mapped_type> ROBIN_HOOD(NODISCARD) typename std::enable_if<std::is_void<Q>::value, bool>::type has(const value_type& e) const { ROBIN_HOOD_TRACE(this) return find(e) != end(); } void reserve(size_t c, bool forceRehash) { ROBIN_HOOD_TRACE(this) auto const minElementsAllowed = (std::max)(c, mNumElements); auto newSize = InitialNumElements; while (calcMaxNumElementsAllowed(newSize) < minElementsAllowed && newSize != 0) { newSize *= 2; } if (ROBIN_HOOD_UNLIKELY(newSize == 0)) { throwOverflowError(); } ROBIN_HOOD_LOG("newSize > mMask + 1: " << newSize << " > " << mMask << " + 1") // only actually do anything when the new size is bigger than the old one. This prevents to // continuously allocate for each reserve() call. if (forceRehash || newSize > mMask + 1) { rehashPowerOfTwo(newSize, false); } } // reserves space for at least the specified number of elements. // only works if numBuckets if power of two // True on success, false otherwise void rehashPowerOfTwo(size_t numBuckets, bool forceFree) { ROBIN_HOOD_TRACE(this) Node* const oldKeyVals = mKeyVals; uint8_t const* const oldInfo = mInfo; const size_t oldMaxElementsWithBuffer = calcNumElementsWithBuffer(mMask + 1); // resize operation: move stuff initData(numBuckets); if (oldMaxElementsWithBuffer > 1) { for (size_t i = 0; i < oldMaxElementsWithBuffer; ++i) { if (oldInfo[i] != 0) { // might throw an exception, which is really bad since we are in the middle of // moving stuff. insert_move(std::move(oldKeyVals[i])); // destroy the node but DON'T destroy the data. oldKeyVals[i].~Node(); } } // this check is not necessary as it's guarded by the previous if, but it helps // silence g++'s overeager "attempt to free a non-heap object 'map' // [-Werror=free-nonheap-object]" warning. if (oldKeyVals != reinterpret_cast_no_cast_align_warning<Node*>(&mMask)) { // don't destroy old data: put it into the pool instead if (forceFree) { std::free(oldKeyVals); } else { DataPool::addOrFree(oldKeyVals, calcNumBytesTotal(oldMaxElementsWithBuffer)); } } } } ROBIN_HOOD(NOINLINE) void throwOverflowError() const { #if ROBIN_HOOD(HAS_EXCEPTIONS) throw std::overflow_error("robin_hood::map overflow"); #else abort(); #endif } template <typename OtherKey, typename... Args> std::pair<iterator, bool> try_emplace_impl(OtherKey&& key, Args&&... args) { ROBIN_HOOD_TRACE(this) auto idxAndState = insertKeyPrepareEmptySpot(key); switch (idxAndState.second) { case InsertionState::key_found: break; case InsertionState::new_node: ::new (static_cast<void*>(&mKeyVals[idxAndState.first])) Node( *this, std::piecewise_construct, std::forward_as_tuple(std::forward<OtherKey>(key)), std::forward_as_tuple(std::forward<Args>(args)...)); break; case InsertionState::overwrite_node: mKeyVals[idxAndState.first] = Node(*this, std::piecewise_construct, std::forward_as_tuple(std::forward<OtherKey>(key)), std::forward_as_tuple(std::forward<Args>(args)...)); break; case InsertionState::overflow_error: throwOverflowError(); break; } return std::make_pair(iterator(mKeyVals + idxAndState.first, mInfo + idxAndState.first), InsertionState::key_found != idxAndState.second); } template <typename OtherKey, typename Mapped> std::pair<iterator, bool> insertOrAssignImpl(OtherKey&& key, Mapped&& obj) { ROBIN_HOOD_TRACE(this) auto idxAndState = insertKeyPrepareEmptySpot(key); switch (idxAndState.second) { case InsertionState::key_found: mKeyVals[idxAndState.first].getSecond() = std::forward<Mapped>(obj); break; case InsertionState::new_node: ::new (static_cast<void*>(&mKeyVals[idxAndState.first])) Node( *this, std::piecewise_construct, std::forward_as_tuple(std::forward<OtherKey>(key)), std::forward_as_tuple(std::forward<Mapped>(obj))); break; case InsertionState::overwrite_node: mKeyVals[idxAndState.first] = Node(*this, std::piecewise_construct, std::forward_as_tuple(std::forward<OtherKey>(key)), std::forward_as_tuple(std::forward<Mapped>(obj))); break; case InsertionState::overflow_error: throwOverflowError(); break; } return std::make_pair(iterator(mKeyVals + idxAndState.first, mInfo + idxAndState.first), InsertionState::key_found != idxAndState.second); } void initData(size_t max_elements) { mNumElements = 0; mMask = max_elements - 1; mMaxNumElementsAllowed = calcMaxNumElementsAllowed(max_elements); auto const numElementsWithBuffer = calcNumElementsWithBuffer(max_elements); // malloc & zero mInfo. Faster than calloc everything. auto const numBytesTotal = calcNumBytesTotal(numElementsWithBuffer); ROBIN_HOOD_LOG("std::calloc " << numBytesTotal << " = calcNumBytesTotal(" << numElementsWithBuffer << ")") mKeyVals = reinterpret_cast<Node*>( detail::assertNotNull<std::bad_alloc>(std::malloc(numBytesTotal))); mInfo = reinterpret_cast<uint8_t*>(mKeyVals + numElementsWithBuffer); std::memset(mInfo, 0, numBytesTotal - numElementsWithBuffer * sizeof(Node)); // set sentinel mInfo[numElementsWithBuffer] = 1; mInfoInc = InitialInfoInc; mInfoHashShift = InitialInfoHashShift; } enum class InsertionState { overflow_error, key_found, new_node, overwrite_node }; // Finds key, and if not already present prepares a spot where to pot the key & value. // This potentially shifts nodes out of the way, updates mInfo and number of inserted // elements, so the only operation left to do is create/assign a new node at that spot. template <typename OtherKey> std::pair<size_t, InsertionState> insertKeyPrepareEmptySpot(OtherKey&& key) { for (int i = 0; i < 256; ++i) { size_t idx{}; InfoType info{}; keyToIdx(key, &idx, &info); nextWhileLess(&info, &idx); // while we potentially have a match while (info == mInfo[idx]) { if (WKeyEqual::operator()(key, mKeyVals[idx].getFirst())) { // key already exists, do NOT insert. // see http://en.cppreference.com/w/cpp/container/unordered_map/insert return std::make_pair(idx, InsertionState::key_found); } next(&info, &idx); } // unlikely that this evaluates to true if (ROBIN_HOOD_UNLIKELY(mNumElements >= mMaxNumElementsAllowed)) { if (!increase_size()) { return std::make_pair(size_t(0), InsertionState::overflow_error); } continue; } // key not found, so we are now exactly where we want to insert it. auto const insertion_idx = idx; auto const insertion_info = info; if (ROBIN_HOOD_UNLIKELY(insertion_info + mInfoInc > 0xFF)) { mMaxNumElementsAllowed = 0; } // find an empty spot while (0 != mInfo[idx]) { next(&info, &idx); } if (idx != insertion_idx) { shiftUp(idx, insertion_idx); } // put at empty spot mInfo[insertion_idx] = static_cast<uint8_t>(insertion_info); ++mNumElements; return std::make_pair(insertion_idx, idx == insertion_idx ? InsertionState::new_node : InsertionState::overwrite_node); } // enough attempts failed, so finally give up. return std::make_pair(size_t(0), InsertionState::overflow_error); } bool try_increase_info() { ROBIN_HOOD_LOG("mInfoInc=" << mInfoInc << ", numElements=" << mNumElements << ", maxNumElementsAllowed=" << calcMaxNumElementsAllowed(mMask + 1)) if (mInfoInc <= 2) { // need to be > 2 so that shift works (otherwise undefined behavior!) return false; } // we got space left, try to make info smaller mInfoInc = static_cast<uint8_t>(mInfoInc >> 1U); // remove one bit of the hash, leaving more space for the distance info. // This is extremely fast because we can operate on 8 bytes at once. ++mInfoHashShift; auto const numElementsWithBuffer = calcNumElementsWithBuffer(mMask + 1); for (size_t i = 0; i < numElementsWithBuffer; i += 8) { auto val = unaligned_load<uint64_t>(mInfo + i); val = (val >> 1U) & UINT64_C(0x7f7f7f7f7f7f7f7f); std::memcpy(mInfo + i, &val, sizeof(val)); } // update sentinel, which might have been cleared out! mInfo[numElementsWithBuffer] = 1; mMaxNumElementsAllowed = calcMaxNumElementsAllowed(mMask + 1); return true; } // True if resize was possible, false otherwise bool increase_size() { // nothing allocated yet? just allocate InitialNumElements if (0 == mMask) { initData(InitialNumElements); return true; } auto const maxNumElementsAllowed = calcMaxNumElementsAllowed(mMask + 1); if (mNumElements < maxNumElementsAllowed && try_increase_info()) { return true; } ROBIN_HOOD_LOG("mNumElements=" << mNumElements << ", maxNumElementsAllowed=" << maxNumElementsAllowed << ", load=" << (static_cast<double>(mNumElements) * 100.0 / (static_cast<double>(mMask) + 1))) if (mNumElements * 2 < calcMaxNumElementsAllowed(mMask + 1)) { // we have to resize, even though there would still be plenty of space left! // Try to rehash instead. Delete freed memory so we don't steadyily increase mem in case // we have to rehash a few times nextHashMultiplier(); rehashPowerOfTwo(mMask + 1, true); } else { // we've reached the capacity of the map, so the hash seems to work nice. Keep using it. rehashPowerOfTwo((mMask + 1) * 2, false); } return true; } void nextHashMultiplier() { // adding an *even* number, so that the multiplier will always stay odd. This is necessary // so that the hash stays a mixing function (and thus doesn't have any information loss). mHashMultiplier += UINT64_C(0xc4ceb9fe1a85ec54); } void destroy() { if (0 == mMask) { // don't deallocate! return; } Destroyer<Self, IsFlat && std::is_trivially_destructible<Node>::value>{} .nodesDoNotDeallocate(*this); // This protection against not deleting mMask shouldn't be needed as it's sufficiently // protected with the 0==mMask check, but I have this anyways because g++ 7 otherwise // reports a compile error: attempt to free a non-heap object 'fm' // [-Werror=free-nonheap-object] if (mKeyVals != reinterpret_cast_no_cast_align_warning<Node*>(&mMask)) { ROBIN_HOOD_LOG("std::free") std::free(mKeyVals); } } void init() noexcept { mKeyVals = reinterpret_cast_no_cast_align_warning<Node*>(&mMask); mInfo = reinterpret_cast<uint8_t*>(&mMask); mNumElements = 0; mMask = 0; mMaxNumElementsAllowed = 0; mInfoInc = InitialInfoInc; mInfoHashShift = InitialInfoHashShift; } // members are sorted so no padding occurs uint64_t mHashMultiplier = UINT64_C(0xc4ceb9fe1a85ec53); // 8 byte 8 Node* mKeyVals = reinterpret_cast_no_cast_align_warning<Node*>(&mMask); // 8 byte 16 uint8_t* mInfo = reinterpret_cast<uint8_t*>(&mMask); // 8 byte 24 size_t mNumElements = 0; // 8 byte 32 size_t mMask = 0; // 8 byte 40 size_t mMaxNumElementsAllowed = 0; // 8 byte 48 InfoType mInfoInc = InitialInfoInc; // 4 byte 52 InfoType mInfoHashShift = InitialInfoHashShift; // 4 byte 56 // 16 byte 56 if NodeAllocator }; } // namespace detail // map template <typename Key, typename T, typename Hash = hash<Key>, typename KeyEqual = std::equal_to<Key>, size_t MaxLoadFactor100 = 80> using unordered_flat_map = detail::Table<true, MaxLoadFactor100, Key, T, Hash, KeyEqual>; template <typename Key, typename T, typename Hash = hash<Key>, typename KeyEqual = std::equal_to<Key>, size_t MaxLoadFactor100 = 80> using unordered_node_map = detail::Table<false, MaxLoadFactor100, Key, T, Hash, KeyEqual>; template <typename Key, typename T, typename Hash = hash<Key>, typename KeyEqual = std::equal_to<Key>, size_t MaxLoadFactor100 = 80> using unordered_map = detail::Table<sizeof(robin_hood::pair<Key, T>) <= sizeof(size_t) * 6 && std::is_nothrow_move_constructible<robin_hood::pair<Key, T>>::value && std::is_nothrow_move_assignable<robin_hood::pair<Key, T>>::value, MaxLoadFactor100, Key, T, Hash, KeyEqual>; // set template <typename Key, typename Hash = hash<Key>, typename KeyEqual = std::equal_to<Key>, size_t MaxLoadFactor100 = 80> using unordered_flat_set = detail::Table<true, MaxLoadFactor100, Key, void, Hash, KeyEqual>; template <typename Key, typename Hash = hash<Key>, typename KeyEqual = std::equal_to<Key>, size_t MaxLoadFactor100 = 80> using unordered_node_set = detail::Table<false, MaxLoadFactor100, Key, void, Hash, KeyEqual>; template <typename Key, typename Hash = hash<Key>, typename KeyEqual = std::equal_to<Key>, size_t MaxLoadFactor100 = 80> using unordered_set = detail::Table<sizeof(Key) <= sizeof(size_t) * 6 && std::is_nothrow_move_constructible<Key>::value && std::is_nothrow_move_assignable<Key>::value, MaxLoadFactor100, Key, void, Hash, KeyEqual>; } // namespace robin_hood #endif #define FOR(i, a, b) for(int i =(a); i < (b); ++i) #define re(i, n) FOR(i, 1, n) #define ford(i, a, b) for(int i = (a); i >= (b); --i) #define rep(i, n) for(int i = 0;i <(n); ++i) #define all(x) (x).begin(), (x).end() #define sz(x) (int) (x).size() using namespace std; typedef long long ll; typedef pair<ll, ll> pll; typedef pair<int, int> pii; typedef vector<ll> vll; typedef vector<int> vi; typedef vector<pll> vpll; typedef vector<pii> vpii; const ll inf = 1e18; const int N = 5005; const int mod = 1e9 + 7; vi ans; int n; int m; ll m1 = 1e9 + 69 + 69 + 69; ll hbase = 2137; struct pllhash { int operator()(const pair<int, ll>& a) const { return a.first + m1 * a.second; } }; robin_hood::unordered_flat_map<pll, pii, pllhash> hash_map; vector<ll> basepow[2]; inline ll mod_subt(ll a, ll b, ll mod) { return (a - b < 0) ? a - b + mod : a - b; } inline ll mod_add(ll a, ll b, ll mod) { return (a + b >= mod) ? a + b - mod : a + b; } struct pe { int cur; int init; int cnt1; int cnt2; const bool operator<(const pe& b) const { return cur < b.cur; } }; void f(const vi& A, int B, vpii& out) { priority_queue<pii> pq; int t = -1; int cur = 1; int cnt22 = 1; vector<pe> chuj; int used = 0; for (int i = 1; i < sz(A); i++) { if (A[i]== A[i-1]) { cnt22++; } else { pe c; c.cnt1 = 0; c.cnt2 = cnt22; cnt22 = 1; c.init = c.cur = A[i-1]; chuj.push_back(c); pq.push({c.cur, sz(chuj)-1}); } } pe c; c.cnt1 = 0; c.cnt2 = cnt22; c.init = c.cur = A.back(); chuj.push_back(c); pq.push({c.cur, sz(chuj)-1}); while (B && !pq.empty()) { pii vp = pq.top(); int idx = vp.second; int cur = chuj[idx].cur; int init = chuj[idx].init; int cnt = chuj[idx].cnt1; int cnt2 = chuj[idx].cnt2; if (B - used < cnt2) break; pq.pop(); used += cnt2; cnt++; out.push_back({used, cur}); cur = (init + 2*cnt) / (cnt + 1); if (cur > 2) { chuj[idx].cur = cur; chuj[idx].cnt1 = cnt; pq.push({cur, idx}); } } if (pq.empty()) out.push_back({B+1, 2}); else out.push_back({B+1, chuj[pq.top().second].cur}); } void process_dupa(const vi& A, int mode) { int n = sz(A); for (int i = 0; i < n; i++) { ll h1 = 1ll; ll h2 = 1ll; vi As = {1}; int t = -1; int cur = 1; int l = 1; int pcur = cur; for (int j = i+1; j < n; j++) { if (A[j] > A[j-1]) { if (t == 1) { cur++; } else if (t == 0) { t = 1; As.push_back(cur); pcur = -1; cur = 2; } else { t = 1; cur++; } } else { if (t == 0) { cur++; } else if (t == 1) { t = 0; As.push_back(cur); pcur = -1; cur=2; } else { t = 0; cur++; } } As.back() = cur; if (pcur != -1) { h1 = mod_subt(h1, basepow[0][pcur], m1); h2 -= basepow[1][pcur]; } h1 = mod_add(h1, basepow[0][cur],m1); h2 += basepow[1][cur]; if (mode) { hash_map[{h1, h2}].first++; } else { hash_map[{h1, h2}].second++; } } } } void process_dupa2(const vi& A, int mode) { int nn = sz(A); for (int i = 0; i < nn; i++) { ll h1 = 1ll; ll h2 = 1ll; vi As = {1}; int t = -1; int cur = 1; int l = 1; int pcur = cur; for (int j = i+1; j < nn; j++) { l++; if (A[j] > A[j-1]) { if (t == 1) { cur++; } else if (t == 0) { t = 1; As.push_back(cur); pcur = -1; cur = 2; } else { t = 1; cur++; } } else { if (t == 0) { cur++; } else if (t == 1) { t = 0; As.push_back(cur); pcur = -1; cur=2; } else { t = 0; cur++; } } As.back() = cur; if (pcur != -1) { h1 = mod_subt(h1, basepow[0][pcur], m1); h2 -= basepow[1][pcur]; } h1 = mod_add(h1, basepow[0][cur],m1); h2 += basepow[1][cur]; auto it = hash_map[{h1, h2}]; if (it.first != -1) { int a_oc = it.first; int b_oc = it.second; vpii outt; f(As, min(l-1, m), outt); reverse(all(outt)); for (int i = 1; i < min(l, m+1); i++) { while (i >= outt.back().first) outt.pop_back(); ll dupa = outt.back().second; ans[dupa] += ((m-i+1) * a_oc % mod); ans[dupa] %= mod; ans[dupa] += ((n - i + 1) * b_oc % mod); ans[dupa] %= mod; } hash_map[{h1, h2}] = {-1, -1}; } } } } int main() { ios_base::sync_with_stdio(0); cin >> n >> m; vi A(n); vi B(m); ans.resize(n + m + 1); basepow[0].resize(n + m + 1); basepow[1].resize(n + m + 1); basepow[0][0] = 1; basepow[1][0] = 1; for (int i = 1; i <= n + m; i++) { basepow[0][i] = basepow[0][i-1] * hbase; basepow[0][i] %= m1; basepow[1][i] = basepow[1][i-1] * hbase; } rep(i, n) { cin >> A[i]; } rep(i, m) { cin >> B[i]; } if (m > n) { swap(m, n); swap(A, B); } process_dupa(A, 1); process_dupa(B, 0); process_dupa2(A, 1); process_dupa2(B, 0); for (int i = 1; i <= (min(n, m)); i++) { ans[2] += ((n-i+1) * (m-i+1) % mod); ans[2] %= mod; } for (int i = 1; i <= n + m; i++) cout << ans[i] << " "; cout << '\n'; } |