1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
#include <iostream>
#include <unordered_map>
#include <bits/stdc++.h>
#include <algorithm>

using namespace std;

int main(int argc, char const *argv[])
{
    std::ios_base::sync_with_stdio(false);
    std::cin.tie(NULL);

    int n;
    int m;

    cin >> n;
    cin >> m;

    int total_color_count_n[n];
    int total_color_count_m[m];

    int duplicate_n[n];
    int duplicate_m[m];

    int color_freq_n[n][32];
    int color_freq_m[m][32];

    // Initialize all the arrays with 0
    memset(total_color_count_n, 0, sizeof(total_color_count_n));
    memset(total_color_count_m, 0, sizeof(total_color_count_m));
    memset(color_freq_n, 0, sizeof(color_freq_n));
    memset(color_freq_m, 0, sizeof(color_freq_m));
    memset(duplicate_n, 0, sizeof(duplicate_n));
    memset(duplicate_m, 0, sizeof(duplicate_m));

    // Read data from input
    for (int i = 0; i < n; i++) {
        for (int j = 0; j < m; j++) {
            char color;
            cin >> color;
            color_freq_n[i][color - 'A']++;
            color_freq_m[j][color - 'A']++;
        }
    }

    // Intialize the total color count
    for (int i = 0; i < n; i++) {
        for (int j = 0; j < 32; j++) {
            if (color_freq_n[i][j] > 0) {
                total_color_count_n[i]++;
            }
        }
    }
    // Intialize the total color count
    for (int i = 0; i < m; i++) {
        for (int j = 0; j < 32; j++) {
            if (color_freq_m[i][j] > 0) {
                total_color_count_m[i]++;
            }
        }
    }

    std::queue<std::tuple<char, int, char>> myQueue;
    
    // Find row or with one color
    char type;
    int index;
    char color;

    // Search for rows with one color
    for (int i = 0; i < n; i++) {
        if (total_color_count_n[i] == 1) {
            for (int j = 0; j < 32; j++) {
                if (color_freq_n[i][j] > 0) {
                    type = 'R';
                    index = i;
                    color = j + 'A';
                    std::tuple<char, int, char> triple(type, index, color);
                    myQueue.push(triple);
                    duplicate_n[i] = 1;
                    break;
                }
            }
        }
    }

    // If row with one color is not found, search for column with one color
    //if (myQueue.empty()) {
        for (int i = 0; i < m; i++) {
            if (total_color_count_m[i] == 1) {
                for (int j = 0; j < 32; j++) {
                    if (color_freq_m[i][j] > 0) {
                        type = 'K';
                        index = i;
                        color = j + 'A';
                        std::tuple<char, int, char> triple(type, index, color);
                        myQueue.push(triple);
                        duplicate_m[i] = 1;
                        break;
                    }
                }
            }
        }
    //}

    vector<std::tuple<char, int, char>> solution;
    
    while (!myQueue.empty()) {
        // Read element from the queue
        std::tuple<char, int, char> element = myQueue.front();
        myQueue.pop();

        char type = std::get<0>(element);
        int index = std::get<1>(element);
        char color = std::get<2>(element);

        // Add the element to the solution
        solution.push_back(element);

        // Decrease color frequencies in appropriate row or column
        if (type == 'R') {
            total_color_count_n[index] = 0;
            for (int k = 0; k < 32; k++) {
                color_freq_n[index][k] = 0;
            }

            for (int j = 0; j < m; j++) {
                color_freq_m[j][color - 'A']--;
                if (color_freq_m[j][color - 'A'] == 0) {
                    total_color_count_m[j]--;
                    if (total_color_count_m[j] == 1) {
                        for (int k = 0; k < 32; k++) {
                            if (color_freq_m[j][k] > 0) {
                                if (duplicate_m[j] == 0) {                                   
                                    std::tuple<char, int, char> newTriple('K', j, k + 'A');
                                    myQueue.push(newTriple);
                                    duplicate_m[j] = 1;
                                    break;
                                } 
                            }
                        }
                    }
                }
            }
        } else if (type == 'K') {
            total_color_count_m[index] = 0;
            for (int k = 0; k < 32; k++) {
                color_freq_m[index][k] = 0;
            }

            for (int i = 0; i < n; i++) {
                color_freq_n[i][color - 'A']--;
                if (color_freq_n[i][color - 'A'] == 0) {
                    total_color_count_n[i]--;
                    if (total_color_count_n[i] == 1) {
                        for (int k = 0; k < 32; k++) {
                            if (color_freq_n[i][k] > 0) {
                                if (duplicate_n[i] == 0) {
                                    std::tuple<char, int, char> newTriple('R', i, k + 'A');
                                    myQueue.push(newTriple);
                                    duplicate_n[i] = 1;
                                    break;
                                }                                
                            }
                        }
                    }
                }
            }
        }
    }

    // Iterate over the solution is reverse order and print the result
    cout << solution.size() << endl;
    for (int i = solution.size() - 1; i >= 0; i--) {
        std::tuple<char, int, char> element = solution[i];
        char type = std::get<0>(element);
        int index = std::get<1>(element);
        char color = std::get<2>(element);
        cout << type << " " << index + 1 << " " << color << endl;
    }
}