1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
#include <bits/stdc++.h>


/**
 * Top tree!
 *
 * Usage:
 *   Make a `struct T : public top_tree_node_base<T>` (CRTP), which implements
 *     void update()
 *     void downdate()
 *     void do_flip_path()
 *     void do_other_operation() ...
 *   When update() is called, you can assume downdate() has already been called.
 *
 *   In general, do_op() should eagerly apply the operation but not touch the
 *   children. In downdate(), you can push down to the children with ch->do_op().
 *   WARNING: if different operations do not trivially commute, you *must*
 *   implement a way to swap/alter them to compose in a consistent order, and you
 *   must use that order when implementing downdate(). This can be nontrivial!
 *
 *   Creating vertices:
 *     n->is_path = n->is_vert = true;
 *     n->update();
 *
 *   Creating edges: no setup/update() needed, just call
 *     link(e, va, vb);
 *
 *   Updates:
 *     auto cur = get_path(va, vb); // or get_subtree(va, vb)
 *     cur->do_stuff();
 *     cur->downdate();
 *     cur->update_all();
 *
 * Node types:
 *   path edges: compress(c[0], self, c[1])
 *     assert(is_path && !is_vert);
 *     assert(c[0] && c[1]);
 *     assert(c[0]->is_path && c[1]->is_path);
 *     assert(!c[2]);
 *   (path) vertices: self + rake(c[0], c[1])
 *     assert(is_path && is_vert);
 *     assert(!c[2]);
 *     if (c[0]) assert(!c[0]->is_path);
 *     if (c[1]) assert(!c[1]->is_path);
 *   non-path edges: rake(c[0], self + c[2], c[1])
 *     assert(!is_path && !is_vert);
 *     assert(c[2])
 *     assert(c[2]->is_path);
 *     if (c[0]) assert(!c[0]->is_path);
 *     if (c[1]) assert(!c[1]->is_path);
 */

template <typename top_tree_node> struct top_tree_node_base {
private:
	top_tree_node* derived_this() {
		return static_cast<top_tree_node*>(this);
	}
	const top_tree_node* derived_this() const {
		return static_cast<const top_tree_node*>(this);
	}
public:
	mutable top_tree_node* p = nullptr;
	std::array<top_tree_node*, 3> c{nullptr, nullptr, nullptr};

	int d() const {
		assert(p);
		if (this == p->c[0]) {
			return 0;
		} else if (this == p->c[1]) {
			return 1;
		} else if (this == p->c[2]) {
			return 2;
		} else assert(false);
	}
	top_tree_node*& p_c() const { return p->c[d()]; } // p->c which points to you

	// 3 types of verts: path edges, path verts, non-path edges
	bool is_path;
	bool is_vert;

	bool r() const { return !p || p->is_path != is_path; }

private:
	// Convenience wrappers for the derived functions.
	void do_flip_path() {
		derived_this()->do_flip_path();
	}
	void downdate() {
		derived_this()->downdate();
	}
	void update() {
		derived_this()->update();
	}

public:
	void downdate_all() {
		if (p) p->downdate_all();
		downdate();
	}

	// Returns the root
	top_tree_node* update_all() {
		top_tree_node* cur = derived_this();
		cur->update();
		while (cur->p) {
			cur = cur->p;
			cur->update();
		}
		return cur;
	}

private:

	void rot() {
		assert(!is_vert);
		assert(!r());
		top_tree_node* pa = p;
		int x = d(); assert(x == 0 || x == 1);
		top_tree_node* ch = c[!x];

		if (pa->p) pa->p_c() = derived_this();
		this->p = pa->p;

		pa->c[x] = ch;
		if (ch) ch->p = pa;

		this->c[!x] = pa;
		pa->p = derived_this();

		pa->update();
	}

	void rot_2(int c_d) {
		assert(!is_vert);
		assert(!r());
		assert(c[c_d]);
		assert(!c[c_d]->is_vert);

		if (d() == c_d) {
			rot();
			return;
		}

		top_tree_node* pa = p;
		int x = d(); assert(x == 0 || x == 1);
		assert(c_d == !x);
		top_tree_node* ch = c[c_d]->c[!x];

		if (pa->p) pa->p_c() = derived_this();
		this->p = pa->p;

		pa->c[x] = ch;
		if (ch) ch->p = pa;

		this->c[c_d]->c[!x] = pa;
		pa->p = this->c[c_d];

		pa->update();
	}

	void splay_dir(int x) {
		while (!r() && d() == x) {
			if (!p->r() && p->d() == x) {
				p->rot();
			}
			rot();
		}
	}

	void splay_2(int c_d) {
		assert(!is_vert && is_path);
		assert(c[c_d] && !c[c_d]->is_vert);
		while (!r()) {
			if (!p->r()) {
				if (p->d() == d()) {
					p->rot();
				} else {
					rot_2(c_d);
				}
			}
			rot_2(c_d);
		}
	}

	void splay_2() {
		assert(!is_vert && is_path);
		assert(!r());
		p->splay_2(d());
	}

	void splay_vert() {
		assert(is_vert);
		if (r()) {
			return;
		}
		p->splay_dir(d());
		if (p->r()) {
			return;
		}

		assert(p->d() != d());
		// we have a preference to be the left child
		if (d() == 1) {
			p->rot();
		}
		assert(d() == 0);

		p->splay_2();
		assert(d() == 0);
		assert(p->d() == 1);
		assert(p->p->r());
	}

	void splay() {
		assert(!is_vert);
		while (!r()) {
			if (!p->r()) {
				if (p->d() == d()) {
					p->rot();
				} else {
					rot();
				}
			}
			rot();
		}
	}

	top_tree_node* cut_right() {
		assert(is_vert && is_path);
		splay_vert();

		if (r() || d() == 1) {
			assert(r() || (d() == 1 && p->r()));
			assert(c[0] == nullptr);
			return nullptr;
		}

		top_tree_node* pa = p;
		assert(pa->r() || (pa->d() == 1 && pa->p->r()));
		assert(!pa->is_vert);
		assert(pa->is_path);
		assert(pa->c[0] == this);
		assert(pa->c[2] == nullptr);

		if (pa->p) pa->p_c() = derived_this();
		this->p = pa->p;

		pa->is_path = false;
		pa->c[2] = pa->c[1]; // don't need to change the parent

		pa->c[0] = c[0]; if (c[0]) c[0]->p = pa;
		pa->c[1] = c[1]; if (c[1]) c[1]->p = pa;

		c[0] = nullptr;
		c[1] = pa; pa->p = derived_this();
		assert(c[2] == nullptr);

		assert(c[0] == nullptr);

		pa->update();
		return pa;
	}

	top_tree_node* splice_non_path() {
		assert(!is_path);
		assert(!is_vert);

		splay();
		assert(p && p->is_vert && p->is_path);
		p->cut_right();

		if (!p->is_path) rot();
		assert(p && p->is_vert && p->is_path);
		assert(p->r() || (p->d() == 1 && p->p->r()));
		assert(p->c[d()] == this && p->c[!d()] == nullptr);

		top_tree_node* pa = p;

		if (pa->p) pa->p_c() = derived_this();
		this->p = pa->p;

		pa->c[0] = c[0]; if (c[0]) c[0]->p = pa;
		pa->c[1] = c[1]; if (c[1]) c[1]->p = pa;

		assert(c[2] && c[2]->is_path);
		c[1] = c[2]; // don't need to change parent
		c[0] = pa; pa->p = derived_this();
		c[2] = nullptr;

		is_path = true;

		pa->update();
		return pa;
	}

	// Return the topmost vertex which was spliced into
	top_tree_node* splice_all() {
		top_tree_node* res = nullptr;
		for (top_tree_node* cur = derived_this(); cur; cur = cur->p) {
			if (!cur->is_path) {
				res = cur->splice_non_path();
			}
			assert(cur->is_path);
		}
		return res;
	}

public:
	// Return the topmost vertex which was spliced into
	top_tree_node* expose() {
		assert(is_vert);
		downdate_all();

		top_tree_node* res = splice_all();

		cut_right();

		update_all();

		return res;
	}

	// Return the topmost vertex which was spliced into
	top_tree_node* expose_edge() {
		assert(!is_vert);
		downdate_all();

		top_tree_node* v = is_path ? c[1] : c[2];
		v->downdate();

		while (!v->is_vert) {
			v = v->c[0];
			v->downdate();
		}

		top_tree_node* res = v->splice_all();
		v->cut_right();
		v->update_all();

		assert(!p);
		assert(v == c[1]);

		return res;
	}

	// Return the new root
	top_tree_node* meld_path_end() {
		assert(!p);
		top_tree_node* rt = derived_this();
		while (true) {
			rt->downdate();
			if (rt->is_vert) break;
			rt = rt->c[1];
		}
		assert(rt->is_vert);
		rt->splay_vert();
		if (rt->c[0] && rt->c[1]) {
			top_tree_node* ch = rt->c[1];
			while (true) {
				ch->downdate();
				if (!ch->c[0]) break;
				ch = ch->c[0];
			}
			ch->splay();
			assert(ch->c[0] == nullptr);

			ch->c[0] = rt->c[0];
			ch->c[0]->p = ch;

			rt->c[0] = nullptr;

			ch->update();
		} else if (rt->c[0]) {
			rt->c[1] = rt->c[0];
			rt->c[0] = nullptr;
		}
		assert(rt->c[0] == nullptr);
		return rt->update_all();
	}

	void make_root() {
		expose();

		top_tree_node* rt = derived_this();
		while (rt->p) {
			assert(rt->d() == 1);
			rt = rt->p;
		}
		rt->do_flip_path();
		rt->meld_path_end();

		expose();

		assert(!p);
	}

	// Link v2 as a child of v1 with edge e
	friend void link(top_tree_node* e, top_tree_node* v1, top_tree_node* v2) {
		assert(e && v1 && v2);
		assert(!e->c[0] && !e->c[1] && !e->c[2]);
		v1->expose(); while (v1->p) v1 = v1->p;
		v2->make_root();

		assert(!v1->p);
		assert(!v2->p);

		e->is_path = true, e->is_vert = false;
		e->c[0] = v1;
		v1->p = e;
		e->c[1] = v2;
		v2->p = e;
		e->update();
	}

	// Link v2's root as a child of v1 with edge e
	// Returns false if they're already in the same subtree
	friend bool link_root(top_tree_node* e, top_tree_node* v1, top_tree_node* v2) {
		assert(e && v1 && v2);
		assert(!e->c[0] && !e->c[1] && !e->c[2]);
		v1->expose();
		v2->expose();

		while (v1->p) v1 = v1->p;
		while (v2->p) v2 = v2->p;
		if (v1 == v2) return false;

		assert(!v1->p);
		assert(!v2->p);

		e->is_path = true, e->is_vert = false;
		e->c[0] = v1;
		v1->p = e;
		e->c[1] = v2;
		v2->p = e;
		e->update();

		return true;
	}

	// Cuts the edge e
	// Returns the top-tree-root of the two halves; they are not necessarily the split vertices.
	friend std::pair<top_tree_node*, top_tree_node*> cut(top_tree_node* e) {
		assert(!e->is_vert);
		e->expose_edge();

		assert(!e->p);
		assert(e->is_path);

		top_tree_node* l = e->c[0];
		top_tree_node* r = e->c[1];
		assert(l && r);

		e->c[0] = e->c[1] = nullptr;
		l->p = r->p = nullptr;

		assert(e->c[2] == nullptr);

		l = l->meld_path_end();

		return {l, r};
	}

	friend top_tree_node* get_path(top_tree_node* a, top_tree_node* b) {
		assert(a->is_vert && b->is_vert);
		a->make_root();
		b->expose();
		if (a == b) {
			assert(!b->p);
			return b;
		}
		assert(!b->p->p);
		return b->p;
	}

	friend top_tree_node* get_subtree(top_tree_node* rt, top_tree_node* n) {
		rt->make_root();
		n->expose();
		return n;
	}

	friend top_tree_node* get_path_to_root(top_tree_node* b) {
		assert(b->is_vert);
		b->expose();
		if (!b->p) return b;
		assert(!b->p->p);
		return b->p;
	}

	friend top_tree_node* get_subtree_from_root(top_tree_node* n) {
		n->expose();
		return n;
	}

};

template <typename T> void set_min(T& a, const T& b){
	if(b < a) a = b;
}
template <typename T> void set_max(T& a, const T& b){
	if(b > a) a = b;
}

using ll = int64_t;
using namespace std;

ll INF = 1e18;

struct top_tree_node : public top_tree_node_base<top_tree_node> {
	bool lazy_flip_path = false;

	int idx;
	bool is_active = true;
	ll edge_len = 0;

	ll path_len = 0;
	array<pair<ll, int>, 2> closest_node {pair<ll, int>{INF, -1}, pair<ll, int>{INF, -1}};

	void do_flip_path() {
		assert(is_path);
		std::swap(c[0], c[1]);
		lazy_flip_path ^= 1;

		swap(closest_node[0], closest_node[1]);
	}

	void downdate() {
		if (lazy_flip_path) {
			assert(is_path);
			if (!is_vert) {
				c[0]->do_flip_path();
				c[1]->do_flip_path();
			}
			lazy_flip_path = false;
		}
	}

	// NOTE: You may assume downdate() has been called on the current node, but
	// it may not have been called on the children! In particular, be careful
	// when accessing grandchildren information.
	void update() {
		if (is_path && !is_vert) {
			path_len = c[0]->path_len + edge_len + c[1]->path_len;
			closest_node[0] = min(c[0]->closest_node[0], {c[0]->path_len + edge_len + c[1]->closest_node[0].first, c[1]->closest_node[0].second});
			closest_node[1] = min(c[1]->closest_node[1], {c[1]->path_len + edge_len + c[0]->closest_node[1].first, c[0]->closest_node[1].second});
		} else if (is_path && is_vert) {
			path_len = 0;
			closest_node[0] = is_active ? pair<ll, int>{0, idx} : pair<ll, int>{INF, -1};
			for(int z : {0, 1}){
				if(!c[z]) continue;
				set_min(closest_node[0], c[z]->closest_node[0]);
			}
			closest_node[1] = closest_node[0];
		} else if (!is_path && !is_vert){
			path_len = edge_len;
			closest_node[0] = {min(INF, edge_len + c[2]->closest_node[0].first), c[2]->closest_node[0].second};
			for(int z : {0, 1}){
				if(!c[z]) continue;
				set_min(closest_node[0], c[z]->closest_node[0]);
			}
		}
	}
};

int main() {
	using namespace std;
	ios_base::sync_with_stdio(false), cin.tie(nullptr);
	int N, M, Q;
	cin >> N >> M >> Q;
	int V = N+Q;
	std::vector<top_tree_node> verts(V);
	for (int i = 0; i < V; i++) {
		auto n = &verts[i];
		n->idx = i;
		n->is_path = n->is_vert = true;
		n->is_active = (i >= N);
		n->update();
	}
	std::vector<top_tree_node> edges(V-1);
	std::vector<top_tree_node*> free_list(V-1);
	for (int e = 0; e < V-1; e++) {
		free_list[e] = &edges[e];
	}

	for(int i = 0; i < M; i++){
		int x, y;
		ll d;
		cin >> x >> y >> d;
		x--; y--;
		auto e = free_list.back(); free_list.pop_back();
		e->edge_len = d;
		link(e, &verts[x], &verts[y]);
	}

	int cidx = N;
	vector<tuple<int, int, int, ll> > queries;
	for(int q = 0; q < Q; q++){
		int type;
		cin >> type;
		if(type == 1){
			int x, y;
			ll d;
			cin >> x >> y >> d;
			x--; y--;
			auto e = free_list.back(); free_list.pop_back();
			e->edge_len = d;
			link(e, &verts[x], &verts[y]);
			queries.push_back({1, x, y, d});
		} else if(type == 2){
			int x, y;
			cin >> x >> y;
			x--; y--;
			auto e = get_path(&verts[x], &verts[y]);
			ll d = e->path_len;
			cut(e);
			free_list.push_back(e);
			queries.push_back({2, x, y, d});
		} else if(type == 3){
			int v;
			ll z;
			int c; // color
			cin >> v >> z >> c;
			v--;
			queries.push_back({3, v, c, z});
		} else if(type == 4){
			int u;
			cin >> u;
			u--;
			queries.push_back({4, u, cidx, 0});
			cidx++;
		}
	}
	vector<int> ans_colors(cidx-N, 0);
	for(int q = (int)queries.size()-1; q >= 0; q--){
		int type = get<0>(queries[q]);
		if(type == 1){
			auto [_type, x, y, d] = queries[q];
			auto e = get_path(&verts[x], &verts[y]);
			cut(e);
			free_list.push_back(e);
		} else if(type == 2){
			auto [_type, x, y, d] = queries[q];
			auto e = free_list.back(); free_list.pop_back();
			e->edge_len = d;
			link(e, &verts[x], &verts[y]);
		} else if(type == 3){
			auto [_type, v, c, z] = queries[q];
			while(true){
				auto r = get_subtree(&verts[v], &verts[v]);
				if(r->closest_node[0].first <= z){
					int found = r->closest_node[1].second; 
					ans_colors[found-N] = c;
					verts[found].make_root();
					verts[found].is_active = false;
					verts[found].downdate();
					verts[found].update_all();
				} else {
					break;
				}
			}
		} else if(type == 4){
			auto [_type, v, idx, _0] = queries[q];
			auto e = free_list.back(); free_list.pop_back();
			e->edge_len = 0;
			link(e, &verts[v], &verts[idx]);
		}
	}
	for(int x : ans_colors){
		cout << x << '\n';
	}
	return 0;
}