#include <algorithm> #include <cinttypes> #include <cmath> #include <cstdlib> #include <cstdio> #include <cstdint> #include <deque> #include <initializer_list> #include <map> #include <queue> #include <set> #include <string> #include <unordered_map> #include <unordered_set> #include <vector> using std::deque; using std::initializer_list; using std::make_pair; using std::map; using std::multiset; using std::pair; using std::priority_queue; using std::reverse; using std::set; using std::sort; using std::string; using std::swap; using std::unordered_map; using std::unordered_set; using std::vector; typedef int8_t int8; typedef int16_t int16; typedef int32_t int32; typedef int64_t int64; typedef __int128_t int128; template <typename T> using priority_queue_max = std::priority_queue<T>; template <typename T> using priority_queue_min = std::priority_queue<T, std::vector<T>, std::greater<T>>; const int32 oo = 1e9; const int64 ooo = 1e18; #define scan(args...) [&]{ return scanf(args); }(); #define elements(a) ((int32)(a).size()) #define TESTS int32 _t; scan("%" SCNd32, &_t); while (_t--) inline int64 castformorebits(int32 a) { return (int64)a; } inline int128 castformorebits(int64 a) { return (int128)a; } template <class INT> inline INT abs(INT a) { if (a >= 0) return a; return -a; } template <typename T> T minimum(std::initializer_list<T>&& l) { T answer = *(l.begin()); for (auto a : l) if (a < answer) answer = a; return answer; } template <typename T> T minimum(const vector<T>& l) { T answer = *(l.begin()); for (auto a : l) if (a < answer) answer = a; return answer; } template <typename T> T maximum(std::initializer_list<T>&& l) { T answer = *(l.begin()); for (auto a : l) if (a > answer) answer = a; return answer; } template <typename T> T maximum(const vector<T>& l) { T answer = *(l.begin()); for (auto a : l) if (a > answer) answer = a; return answer; } template <typename T> inline void sort(T &data) { sort(data.begin(), data.end()); } template <typename T> inline void reverse(T &data) { reverse(data.begin(), data.end()); } template <class INT> inline bool is_power_of_2(INT num) { return num && !(num & (num - 1)); } template <class INT> inline INT rightmost_bit(INT num) { return num & -num; } template <class INT> inline INT leftmost_bit(INT num) { while (!is_power_of_2(num)) num -= rightmost_bit(num); return num; } template <class INT> inline bool is_set(INT mask, int pos) { return (mask & (INT(1) << pos)); } template <class INT> inline INT mask_set(INT mask, int pos) { return mask | (INT(1) << pos); } template <class INT> inline INT mask_unset(INT mask, int pos) { return mask & (~(INT(1) << pos)); } inline int32 log_bit(int32 l) { static int32 ctz_precalc[1<<16]; if (ctz_precalc[2] == 0) for (int32 i = 2; i < (1 << 16); i++) ctz_precalc[i] = ctz_precalc[i/2] + 1; int32 offset = 0; if ((l & 0x0000ffff) != 0) { offset += 16; l = l >> 16; } return ctz_precalc[l] + offset; } inline int32 log_bit(int64 l) { static int32 ctz_precalc[1<<16]; if (ctz_precalc[2] == 0) for (int32 i = 2; i < (1 << 16); i++) ctz_precalc[i] = ctz_precalc[i/2] + 1; int32 offset = 0; if ((l & 0x00000000ffffffffLL) != 0) { offset += 32; l = l >> 32; } if ((l & 0x0000ffffLL) != 0) { offset += 16; l = l >> 16; } return ctz_precalc[l] + offset; } inline int count_bits(int64 x) { static int32 popcount_precalc[1<<16]; if (popcount_precalc[1] == 0) { popcount_precalc[1] = 1; for (int32 i = 2; i < (1 << 16); i++) popcount_precalc[i] = popcount_precalc[i/2] + (i & 1); } return popcount_precalc[x & 0xffff] + popcount_precalc[(x >> 16) & 0xffff] + popcount_precalc[(x >> 32) & 0xffff] + popcount_precalc[(x >> 48) & 0xffff]; } inline void read(int32& val) { scan("%" SCNd32, &val); } inline void read(int64& val) { scan("%" SCNd64, &val); } inline void read(double& val) { scan("%lf", &val); } inline void read(string& val, int length = 1e6) { char tmp[length+1]; scan("%s", tmp); val = tmp; } template <class S, class T> inline void read(S& a, T& b) { read(a); read(b); } template <class S> inline void read(vector<S> &v, int n) { v.resize(n); for (int i = 0; i < n; i++) read(v[i]); } template <class S, class T, class U> inline void read(S& a, T& b, U& c) { read(a); read(b); read(c); } template <class S, class T, class U, class V> inline void read(S& a, T& b, U& c, V& d) { read(a); read(b); read(c); read(d); } template <class S, class T, class U, class V, class W> inline void read(S& a, T& b, U& c, V& d, W& e) { read(a); read(b); read(c); read(d); read(e); } inline void write(int32 val) { printf("%" PRId32 " ", val); } inline void write(int64 val) { printf("%" PRId64 " ", val); } inline void write(double val) { printf("%lf ", val); } inline void write(const string& val) { printf("%s ", val.c_str()); } template<class S> inline void write(const vector<S>& val) { for (S el : val) write(el); } template<class S> inline void writeln(const S& a) { write(a); printf("\n"); } template<class S, class T> inline void writeln(const S& a, const T& b) { write(a); write(b); printf("\n"); } template<class S, class T, class U> inline void writeln(const S& a, const T& b, const U& c) { write(a); write(b); write(c); printf("\n"); } template<class S, class T, class U, class V> inline void writeln(const S& a, const T& b, const U& c, const V& d) { write(a); write(b); write(c); write(d); printf("\n"); } template<class S, class T, class U, class V, class W> inline void writeln(const S& a, const T& b, const U& c, const V& d, const W& e) { write(a); write(b); write(c); write(d); write(e); printf("\n"); } #ifdef PCL_DEBUG #define DBG_RED "\033[1;31m" #define DBG_YELLOW "\033[1;33m" #define DBG_BLUE "\033[1;34m" #define DBG_NC "\033[0m" #define debug(var) { printf("%s%s%s = ", DBG_RED, #var, DBG_NC); writeln(var); } #define break_point(str) { printf("%s%s%s\n", DBG_YELLOW, str, DBG_NC); } #else #define debug(...) #define break_point(...) #endif int main() { int n, k; read(n, k); // Generujemy wszystkie poprawne ustawienia; int64 prawe_ustawienie = 0; unordered_set<int64> ustawienia; for (int i = 0; i < n; i++) { prawe_ustawienie |= (1 << i); for (int j = 0; j < n - i; j++) { int64 ustawienie = prawe_ustawienie << j; ustawienia.insert(ustawienie); } } // Wczytujemy dane vector<int> a(k); vector<int> b(k); for (int i = 0; i < k; i++) { read(a[i], b[i]); a[i]--; b[i]--; } reverse(a); reverse(b); // Idziemy od końca i generujemy wszystkie ustawienia początkowe for (int i = 0; i < k; i++) { unordered_set<int64> nowe_ustawienia; for (int64 ustawienie : ustawienia) { if (not is_set(ustawienie, a[i]) and is_set(ustawienie, b[i])) { nowe_ustawienia.insert(ustawienie); ustawienie = mask_set(ustawienie, a[i]); ustawienie = mask_unset(ustawienie, b[i]); nowe_ustawienia.insert(ustawienie); } else if (is_set(ustawienie, a[i]) and not is_set(ustawienie, b[i])) { // Usuwamy ustawienie } else { nowe_ustawienia.insert(ustawienie); } } swap(ustawienia, nowe_ustawienia); // ustawiene = nowe_ustawienia; ale w O(1) } vector<int64> results(n+1, 0); for (int64 ustawienie : ustawienia) { //writeln(ustawienie); results[count_bits(ustawienie)]++; } for (int i = 1; i <= n; i++) write(results[i] % 2); return 0; }
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 | #include <algorithm> #include <cinttypes> #include <cmath> #include <cstdlib> #include <cstdio> #include <cstdint> #include <deque> #include <initializer_list> #include <map> #include <queue> #include <set> #include <string> #include <unordered_map> #include <unordered_set> #include <vector> using std::deque; using std::initializer_list; using std::make_pair; using std::map; using std::multiset; using std::pair; using std::priority_queue; using std::reverse; using std::set; using std::sort; using std::string; using std::swap; using std::unordered_map; using std::unordered_set; using std::vector; typedef int8_t int8; typedef int16_t int16; typedef int32_t int32; typedef int64_t int64; typedef __int128_t int128; template <typename T> using priority_queue_max = std::priority_queue<T>; template <typename T> using priority_queue_min = std::priority_queue<T, std::vector<T>, std::greater<T>>; const int32 oo = 1e9; const int64 ooo = 1e18; #define scan(args...) [&]{ return scanf(args); }(); #define elements(a) ((int32)(a).size()) #define TESTS int32 _t; scan("%" SCNd32, &_t); while (_t--) inline int64 castformorebits(int32 a) { return (int64)a; } inline int128 castformorebits(int64 a) { return (int128)a; } template <class INT> inline INT abs(INT a) { if (a >= 0) return a; return -a; } template <typename T> T minimum(std::initializer_list<T>&& l) { T answer = *(l.begin()); for (auto a : l) if (a < answer) answer = a; return answer; } template <typename T> T minimum(const vector<T>& l) { T answer = *(l.begin()); for (auto a : l) if (a < answer) answer = a; return answer; } template <typename T> T maximum(std::initializer_list<T>&& l) { T answer = *(l.begin()); for (auto a : l) if (a > answer) answer = a; return answer; } template <typename T> T maximum(const vector<T>& l) { T answer = *(l.begin()); for (auto a : l) if (a > answer) answer = a; return answer; } template <typename T> inline void sort(T &data) { sort(data.begin(), data.end()); } template <typename T> inline void reverse(T &data) { reverse(data.begin(), data.end()); } template <class INT> inline bool is_power_of_2(INT num) { return num && !(num & (num - 1)); } template <class INT> inline INT rightmost_bit(INT num) { return num & -num; } template <class INT> inline INT leftmost_bit(INT num) { while (!is_power_of_2(num)) num -= rightmost_bit(num); return num; } template <class INT> inline bool is_set(INT mask, int pos) { return (mask & (INT(1) << pos)); } template <class INT> inline INT mask_set(INT mask, int pos) { return mask | (INT(1) << pos); } template <class INT> inline INT mask_unset(INT mask, int pos) { return mask & (~(INT(1) << pos)); } inline int32 log_bit(int32 l) { static int32 ctz_precalc[1<<16]; if (ctz_precalc[2] == 0) for (int32 i = 2; i < (1 << 16); i++) ctz_precalc[i] = ctz_precalc[i/2] + 1; int32 offset = 0; if ((l & 0x0000ffff) != 0) { offset += 16; l = l >> 16; } return ctz_precalc[l] + offset; } inline int32 log_bit(int64 l) { static int32 ctz_precalc[1<<16]; if (ctz_precalc[2] == 0) for (int32 i = 2; i < (1 << 16); i++) ctz_precalc[i] = ctz_precalc[i/2] + 1; int32 offset = 0; if ((l & 0x00000000ffffffffLL) != 0) { offset += 32; l = l >> 32; } if ((l & 0x0000ffffLL) != 0) { offset += 16; l = l >> 16; } return ctz_precalc[l] + offset; } inline int count_bits(int64 x) { static int32 popcount_precalc[1<<16]; if (popcount_precalc[1] == 0) { popcount_precalc[1] = 1; for (int32 i = 2; i < (1 << 16); i++) popcount_precalc[i] = popcount_precalc[i/2] + (i & 1); } return popcount_precalc[x & 0xffff] + popcount_precalc[(x >> 16) & 0xffff] + popcount_precalc[(x >> 32) & 0xffff] + popcount_precalc[(x >> 48) & 0xffff]; } inline void read(int32& val) { scan("%" SCNd32, &val); } inline void read(int64& val) { scan("%" SCNd64, &val); } inline void read(double& val) { scan("%lf", &val); } inline void read(string& val, int length = 1e6) { char tmp[length+1]; scan("%s", tmp); val = tmp; } template <class S, class T> inline void read(S& a, T& b) { read(a); read(b); } template <class S> inline void read(vector<S> &v, int n) { v.resize(n); for (int i = 0; i < n; i++) read(v[i]); } template <class S, class T, class U> inline void read(S& a, T& b, U& c) { read(a); read(b); read(c); } template <class S, class T, class U, class V> inline void read(S& a, T& b, U& c, V& d) { read(a); read(b); read(c); read(d); } template <class S, class T, class U, class V, class W> inline void read(S& a, T& b, U& c, V& d, W& e) { read(a); read(b); read(c); read(d); read(e); } inline void write(int32 val) { printf("%" PRId32 " ", val); } inline void write(int64 val) { printf("%" PRId64 " ", val); } inline void write(double val) { printf("%lf ", val); } inline void write(const string& val) { printf("%s ", val.c_str()); } template<class S> inline void write(const vector<S>& val) { for (S el : val) write(el); } template<class S> inline void writeln(const S& a) { write(a); printf("\n"); } template<class S, class T> inline void writeln(const S& a, const T& b) { write(a); write(b); printf("\n"); } template<class S, class T, class U> inline void writeln(const S& a, const T& b, const U& c) { write(a); write(b); write(c); printf("\n"); } template<class S, class T, class U, class V> inline void writeln(const S& a, const T& b, const U& c, const V& d) { write(a); write(b); write(c); write(d); printf("\n"); } template<class S, class T, class U, class V, class W> inline void writeln(const S& a, const T& b, const U& c, const V& d, const W& e) { write(a); write(b); write(c); write(d); write(e); printf("\n"); } #ifdef PCL_DEBUG #define DBG_RED "\033[1;31m" #define DBG_YELLOW "\033[1;33m" #define DBG_BLUE "\033[1;34m" #define DBG_NC "\033[0m" #define debug(var) { printf("%s%s%s = ", DBG_RED, #var, DBG_NC); writeln(var); } #define break_point(str) { printf("%s%s%s\n", DBG_YELLOW, str, DBG_NC); } #else #define debug(...) #define break_point(...) #endif int main() { int n, k; read(n, k); // Generujemy wszystkie poprawne ustawienia; int64 prawe_ustawienie = 0; unordered_set<int64> ustawienia; for (int i = 0; i < n; i++) { prawe_ustawienie |= (1 << i); for (int j = 0; j < n - i; j++) { int64 ustawienie = prawe_ustawienie << j; ustawienia.insert(ustawienie); } } // Wczytujemy dane vector<int> a(k); vector<int> b(k); for (int i = 0; i < k; i++) { read(a[i], b[i]); a[i]--; b[i]--; } reverse(a); reverse(b); // Idziemy od końca i generujemy wszystkie ustawienia początkowe for (int i = 0; i < k; i++) { unordered_set<int64> nowe_ustawienia; for (int64 ustawienie : ustawienia) { if (not is_set(ustawienie, a[i]) and is_set(ustawienie, b[i])) { nowe_ustawienia.insert(ustawienie); ustawienie = mask_set(ustawienie, a[i]); ustawienie = mask_unset(ustawienie, b[i]); nowe_ustawienia.insert(ustawienie); } else if (is_set(ustawienie, a[i]) and not is_set(ustawienie, b[i])) { // Usuwamy ustawienie } else { nowe_ustawienia.insert(ustawienie); } } swap(ustawienia, nowe_ustawienia); // ustawiene = nowe_ustawienia; ale w O(1) } vector<int64> results(n+1, 0); for (int64 ustawienie : ustawienia) { //writeln(ustawienie); results[count_bits(ustawienie)]++; } for (int i = 1; i <= n; i++) write(results[i] % 2); return 0; } |