#include <vector> #include <deque> #include <unordered_map> #include <unordered_set> #include <algorithm> #include <iostream> struct Neighbour { int id; int d; }; struct Node { int k = 0; int queryId = 0; std::vector<Neighbour> neighbours; }; struct EdgeInput { int a; int b; int d; }; struct Query { int type; int arg1; long long arg2; int arg3; }; struct Groups { void addNodes(int a, int b) { auto itA = nodeIdToGroupId.find(a); auto itB = nodeIdToGroupId.find(b); if (itA == nodeIdToGroupId.end() && itB == nodeIdToGroupId.end()) { maxGroupId++; nodeIdToGroupId[a] = maxGroupId; nodeIdToGroupId[b] = maxGroupId; groupIdToNodes[maxGroupId].insert(a); groupIdToNodes[maxGroupId].insert(b); } else if (itA != nodeIdToGroupId.end() && itB == nodeIdToGroupId.end()) { nodeIdToGroupId[b] = itA->second; groupIdToNodes[itA->second].insert(b); } else if (itA == nodeIdToGroupId.end() && itB != nodeIdToGroupId.end()) { nodeIdToGroupId[a] = itB->second; groupIdToNodes[itB->second].insert(a); } else { int groupA = itA->second; int groupB = itB->second; if (groupIdToNodes[groupA].size() >= groupIdToNodes[groupB].size()) { for (auto nodeId : groupIdToNodes[groupB]) { nodeIdToGroupId[nodeId] = groupA; } groupIdToNodes[groupA].insert(groupIdToNodes[groupB].begin(), groupIdToNodes[groupB].end()); groupIdToNodes.erase(groupB); } else { for (auto nodeId : groupIdToNodes[groupA]) { nodeIdToGroupId[nodeId] = groupB; } groupIdToNodes[groupB].insert(groupIdToNodes[groupA].begin(), groupIdToNodes[groupA].end()); groupIdToNodes.erase(groupA); } } } bool setColor(int v, long long z, int k, int queryId) { if (singleBigGroup) { if (z >= 200000000000000LL) { queryIdForColorForSingleBigGroup = queryId; colorForSingleBigGroup = k; return true; } } return false; } int getColor(int u, int queryIdLastNodeUpdate) { int result{0}; if (singleBigGroup && colorForSingleBigGroup != 0 && queryIdForColorForSingleBigGroup > queryIdLastNodeUpdate) { result = colorForSingleBigGroup; } return result; } bool singleBigGroup = false; int colorForSingleBigGroup = 0; int queryIdForColorForSingleBigGroup = 0; int maxGroupId = 0; std::unordered_map<int, int> nodeIdToGroupId; std::unordered_map<int, std::unordered_set<int>> groupIdToNodes; std::unordered_map<int, int> groupIdToColor; }; class Solution { public: Solution(int aN, int aM, int aQ) : n(aN) , m(aM) , q(aQ) , queriesType1Type2Exist(false) , allQueriesType3TheSame(true) , nodes(n + 1) {} void run() { getInput(); configureGroups(); processQueries(); } void getInput() { edgesInput.reserve(m); for (int i = 0; i < m; i++) { EdgeInput edge; std::cin >> edge.a >> edge.b >> edge.d; edgesInput.push_back(edge); nodes[edge.a].neighbours.push_back({edge.b, edge.d}); nodes[edge.b].neighbours.push_back({edge.a, edge.d}); //groups.addNodes(a, b); } queries.reserve(q); for (int i = 0; i < q; i++) { Query query; std::cin >> query.type; if (query.type == 1) { queriesType1Type2Exist = true; std::cin >> query.arg1 >> query.arg2 >> query.arg3; } else if (query.type == 2) { queriesType1Type2Exist = true; std::cin >> query.arg1 >> query.arg2; } else if (query.type == 3) { std::cin >> query.arg1 >> query.arg2 >> query.arg3; if (query.arg2 != 1000000000000000LL) { allQueriesType3TheSame = false; } } else if (query.type == 4) { std::cin >> query.arg1; } queries.push_back(query); } } void configureGroups() { if (!queriesType1Type2Exist) { groups.singleBigGroup = true; }/* else { for (auto & edge : edgesInput) { groups.addNodes(edge.a, edge.b); } }*/ } void processQueries() { for (int i = 0; i < q; i++) { Query & query = queries[i]; int queryId = i + 1; int & a = query.arg1; int b = static_cast<int>(query.arg2); int & d = query.arg3; int & v = query.arg1; long long & z = query.arg2; int & k = query.arg3; int & u = query.arg1; if (query.type == 1) { nodes[a].neighbours.push_back({b, d}); nodes[b].neighbours.push_back({a, d}); /*groups.addNodes(a, b);*/ } else if (query.type == 2) { deleteEdge(a, b); } else if (query.type == 3) { addColor(v, z, k, queryId); } else if (query.type == 4) { int color = getColor(u); std::cout << color << "\n"; } } } void deleteEdge(int a, int b) { auto itA = std::find_if(nodes[a].neighbours.begin(), nodes[a].neighbours.end(), [&](auto & neighbour) { return neighbour.id == b; }); nodes[a].neighbours.erase(itA); auto itB = std::find_if(nodes[b].neighbours.begin(), nodes[b].neighbours.end(), [&](auto & neighbour) { return neighbour.id == a; }); nodes[b].neighbours.erase(itB); } void addColor(int v, long long z, int k, int queryId) { if (!groups.setColor(v, z, k, queryId)) { std::deque<std::pair<int, long long>> nodesToProcess; nodesToProcess.push_back(std::pair<int, long long>(v, z)); while (!nodesToProcess.empty()) { int currentNodeId = nodesToProcess.front().first; long long distance = nodesToProcess.front().second; nodesToProcess.pop_front(); nodes[currentNodeId].k = k; nodes[currentNodeId].queryId = queryId; for (auto & adj : nodes[currentNodeId].neighbours) { if (adj.d <= distance) { nodesToProcess.push_back(std::pair<int, long long>(adj.id, distance - adj.d)); } } } } } int getColor(int u) { int color = groups.getColor(u, nodes[u].queryId); return color != 0 ? color : nodes[u].k; } private: int n; int m; int q; bool queriesType1Type2Exist; bool allQueriesType3TheSame; std::vector<Node> nodes; std::vector<EdgeInput> edgesInput; std::vector<Query> queries; Groups groups; }; int main() { std::ios_base::sync_with_stdio(false); std::cin.tie(NULL); int n, m, q; std::cin >> n >> m >> q; Solution solution(n, m, q); solution.run(); return 0; }
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 | #include <vector> #include <deque> #include <unordered_map> #include <unordered_set> #include <algorithm> #include <iostream> struct Neighbour { int id; int d; }; struct Node { int k = 0; int queryId = 0; std::vector<Neighbour> neighbours; }; struct EdgeInput { int a; int b; int d; }; struct Query { int type; int arg1; long long arg2; int arg3; }; struct Groups { void addNodes(int a, int b) { auto itA = nodeIdToGroupId.find(a); auto itB = nodeIdToGroupId.find(b); if (itA == nodeIdToGroupId.end() && itB == nodeIdToGroupId.end()) { maxGroupId++; nodeIdToGroupId[a] = maxGroupId; nodeIdToGroupId[b] = maxGroupId; groupIdToNodes[maxGroupId].insert(a); groupIdToNodes[maxGroupId].insert(b); } else if (itA != nodeIdToGroupId.end() && itB == nodeIdToGroupId.end()) { nodeIdToGroupId[b] = itA->second; groupIdToNodes[itA->second].insert(b); } else if (itA == nodeIdToGroupId.end() && itB != nodeIdToGroupId.end()) { nodeIdToGroupId[a] = itB->second; groupIdToNodes[itB->second].insert(a); } else { int groupA = itA->second; int groupB = itB->second; if (groupIdToNodes[groupA].size() >= groupIdToNodes[groupB].size()) { for (auto nodeId : groupIdToNodes[groupB]) { nodeIdToGroupId[nodeId] = groupA; } groupIdToNodes[groupA].insert(groupIdToNodes[groupB].begin(), groupIdToNodes[groupB].end()); groupIdToNodes.erase(groupB); } else { for (auto nodeId : groupIdToNodes[groupA]) { nodeIdToGroupId[nodeId] = groupB; } groupIdToNodes[groupB].insert(groupIdToNodes[groupA].begin(), groupIdToNodes[groupA].end()); groupIdToNodes.erase(groupA); } } } bool setColor(int v, long long z, int k, int queryId) { if (singleBigGroup) { if (z >= 200000000000000LL) { queryIdForColorForSingleBigGroup = queryId; colorForSingleBigGroup = k; return true; } } return false; } int getColor(int u, int queryIdLastNodeUpdate) { int result{0}; if (singleBigGroup && colorForSingleBigGroup != 0 && queryIdForColorForSingleBigGroup > queryIdLastNodeUpdate) { result = colorForSingleBigGroup; } return result; } bool singleBigGroup = false; int colorForSingleBigGroup = 0; int queryIdForColorForSingleBigGroup = 0; int maxGroupId = 0; std::unordered_map<int, int> nodeIdToGroupId; std::unordered_map<int, std::unordered_set<int>> groupIdToNodes; std::unordered_map<int, int> groupIdToColor; }; class Solution { public: Solution(int aN, int aM, int aQ) : n(aN) , m(aM) , q(aQ) , queriesType1Type2Exist(false) , allQueriesType3TheSame(true) , nodes(n + 1) {} void run() { getInput(); configureGroups(); processQueries(); } void getInput() { edgesInput.reserve(m); for (int i = 0; i < m; i++) { EdgeInput edge; std::cin >> edge.a >> edge.b >> edge.d; edgesInput.push_back(edge); nodes[edge.a].neighbours.push_back({edge.b, edge.d}); nodes[edge.b].neighbours.push_back({edge.a, edge.d}); //groups.addNodes(a, b); } queries.reserve(q); for (int i = 0; i < q; i++) { Query query; std::cin >> query.type; if (query.type == 1) { queriesType1Type2Exist = true; std::cin >> query.arg1 >> query.arg2 >> query.arg3; } else if (query.type == 2) { queriesType1Type2Exist = true; std::cin >> query.arg1 >> query.arg2; } else if (query.type == 3) { std::cin >> query.arg1 >> query.arg2 >> query.arg3; if (query.arg2 != 1000000000000000LL) { allQueriesType3TheSame = false; } } else if (query.type == 4) { std::cin >> query.arg1; } queries.push_back(query); } } void configureGroups() { if (!queriesType1Type2Exist) { groups.singleBigGroup = true; }/* else { for (auto & edge : edgesInput) { groups.addNodes(edge.a, edge.b); } }*/ } void processQueries() { for (int i = 0; i < q; i++) { Query & query = queries[i]; int queryId = i + 1; int & a = query.arg1; int b = static_cast<int>(query.arg2); int & d = query.arg3; int & v = query.arg1; long long & z = query.arg2; int & k = query.arg3; int & u = query.arg1; if (query.type == 1) { nodes[a].neighbours.push_back({b, d}); nodes[b].neighbours.push_back({a, d}); /*groups.addNodes(a, b);*/ } else if (query.type == 2) { deleteEdge(a, b); } else if (query.type == 3) { addColor(v, z, k, queryId); } else if (query.type == 4) { int color = getColor(u); std::cout << color << "\n"; } } } void deleteEdge(int a, int b) { auto itA = std::find_if(nodes[a].neighbours.begin(), nodes[a].neighbours.end(), [&](auto & neighbour) { return neighbour.id == b; }); nodes[a].neighbours.erase(itA); auto itB = std::find_if(nodes[b].neighbours.begin(), nodes[b].neighbours.end(), [&](auto & neighbour) { return neighbour.id == a; }); nodes[b].neighbours.erase(itB); } void addColor(int v, long long z, int k, int queryId) { if (!groups.setColor(v, z, k, queryId)) { std::deque<std::pair<int, long long>> nodesToProcess; nodesToProcess.push_back(std::pair<int, long long>(v, z)); while (!nodesToProcess.empty()) { int currentNodeId = nodesToProcess.front().first; long long distance = nodesToProcess.front().second; nodesToProcess.pop_front(); nodes[currentNodeId].k = k; nodes[currentNodeId].queryId = queryId; for (auto & adj : nodes[currentNodeId].neighbours) { if (adj.d <= distance) { nodesToProcess.push_back(std::pair<int, long long>(adj.id, distance - adj.d)); } } } } } int getColor(int u) { int color = groups.getColor(u, nodes[u].queryId); return color != 0 ? color : nodes[u].k; } private: int n; int m; int q; bool queriesType1Type2Exist; bool allQueriesType3TheSame; std::vector<Node> nodes; std::vector<EdgeInput> edgesInput; std::vector<Query> queries; Groups groups; }; int main() { std::ios_base::sync_with_stdio(false); std::cin.tie(NULL); int n, m, q; std::cin >> n >> m >> q; Solution solution(n, m, q); solution.run(); return 0; } |