1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
#include<bits/stdc++.h>
using namespace std;
using LL=long long;
#define FOR(i,l,r)for(int i=(l);i<=(r);++i)
#define REP(i,n)FOR(i,0,(n)-1)
#define ssize(x)int(x.size())
#ifdef DEBUG
auto&operator<<(auto&o,pair<auto,auto>p){return o<<"("<<p.first<<", "<<p.second<<")";}
auto operator<<(auto&o,auto x)->decltype(x.end(),o){o<<"{";int i=0;for(auto e:x)o<<","+!i++<<e;return o<<"}";}
#define debug(X...)cerr<<"["#X"]: ",[](auto...$){((cerr<<$<<"; "),...)<<endl;}(X)
#else
#define debug(...){}
#endif

void brute(int n, vector<tuple<int, int, int>> edges, vector<tuple<int, int, LL, int>> queries) {
	vector<set<pair<int, int>>> graph(n);
	for (auto [u, v, d] : edges) {
		--u;
		--v;
		graph[u].emplace(v, d);
		graph[v].emplace(u, d);
	}
	vector<int> color(n);
	for (auto [type, a, b, c] : queries) {
		if (type == 1) {
			--a;
			--b;
			graph[a].emplace(b, c);
			graph[b].emplace(a, c);
		}
		else if (type == 2) {
			--a;
			--b;
			graph[a].erase(graph[a].lower_bound(pair(b, 0)));
			graph[b].erase(graph[b].lower_bound(pair(a, 0)));
		}
		else if (type == 3) {
			--a;
			function<void(int, int, LL)> dfs = [&](int v, int par, LL dist) {
				color[v] = c;
				for (auto [u, d] : graph[v]) {
					if (u == par || dist + d > b)
						continue;
					dfs(u, v, dist + d);
				}
			};
			dfs(a, -1, 0);
		}
		else {
			--a;
			cout << color[a] << '\n';
		}
	}
}

struct CentroDecomp {
	const vector<vector<pair<int, int>>> &graph; // tu
	vector<int> par, podsz, odwi;
	vector<int> dep;
	vector<vector<LL>> dist;
	vector<priority_queue<pair<LL, int>>> col;
	int odwi_cnt = 1;
	const int INF = int(1e9);
	int root;
	void refresh() { ++odwi_cnt; }
	void visit(int v) { odwi[v] = max(odwi[v], odwi_cnt); }
	bool is_vis(int v) { return odwi[v] >= odwi_cnt; }
	void dfs_podsz(int v) {
		visit(v);
		podsz[v] = 1;
		for (auto [u, d] : graph[v]) // tu
			if (!is_vis(u)) {
				dfs_podsz(u);
				podsz[v] += podsz[u];
			}
	}
	int centro(int v) {
		refresh();
		dfs_podsz(v);
		int sz = podsz[v] / 2;
		refresh();
		while (true) {
			visit(v);
			for (auto [u, d] : graph[v]) // tu
				if (!is_vis(u) && podsz[u] > sz) {
					v = u;
					break;
				}
			if (is_vis(v))
				return v;
		}
	}
	void dfs_dist(int v, LL dst, int gl) {
		visit(v);
		dist[gl][v] = dst;
		for (auto [u, d] : graph[v])
			if (!is_vis(u))
				dfs_dist(u, dst + d, gl);
	}
	void decomp(int v) {
		refresh();
		// Tu kod. Centroid to v, ktory jest juz dozywotnie odwiedzony.
		refresh();
		dist[dep[v]][v] = 0;
		for (auto [u, d] : graph[v]) {
			if (!is_vis(u)) {
				dfs_dist(u, d, dep[v]);
			}
		}
		// Koniec kodu.
		refresh();
		for(auto [u, d] : graph[v]) // tu
			if (!is_vis(u)) {
				u = centro(u);
				par[u] = v;
				odwi[u] = INF;
				dep[u] = dep[v] + 1;
				// Opcjonalnie tutaj przekazujemy info synowi w drzewie CD.
				decomp(u);
			}
	}
	CentroDecomp(int n, vector<vector<pair<int, int>>> &grph) // tu
	   	: graph(grph), par(n, -1), podsz(n), odwi(n) {
		dist = vector(30, vector(n, 0ll));
		col = vector<priority_queue<pair<LL, int>>>(n);
		dep = vector(n, 0);
		root = centro(0);
		odwi[root] = INF;
		decomp(root);
		debug(dist);
		debug(dep);
	}
	vector<int> collect(int v, LL w) {
		vector<int> ret;
		int u = v;
		while (u != -1) {
			LL cur_w = w - dist[dep[u]][v];
			debug(v, cur_w, dep[u], dist[dep[u]][v]);
			while (ssize(col[u])) {
				auto [odl, id] = col[u].top();
				if (-odl <= cur_w) {
					col[u].pop();
					ret.emplace_back(id);
				}
				else
					break;
			}
			u = par[u];
			debug(ret);
		}
		return ret;
	}
	void toss(int v, int id) {
		int w = v;
		while (w != -1) {
			col[w].emplace(-dist[dep[w]][v], id);
			w = par[w];
		}
	}
};

void sub1(int n, vector<tuple<int, int, int>> edges, vector<tuple<int, int, LL, int>> queries) {
	vector<vector<pair<int, int>>> graph(n);
	for (auto [u, v, d] : edges) {
		--u;
		--v;
		graph[u].emplace_back(v, d);
		graph[v].emplace_back(u, d);
	}
	CentroDecomp cd(n, graph);
	int q = ssize(queries);
	vector<int> is_ans(q);
	vector<pair<int, int>> ans;
	for (int i = ssize(queries) - 1; i >= 0; --i) {
		auto [type, a, b, c] = queries[i];
		assert(type != 1 && type != 2);
		if (type == 3) {
			--a;
			auto vec = cd.collect(a, b);
			for (int w : vec) {
				if (is_ans[w])
					continue;
				is_ans[w] = 1;
				ans.emplace_back(w, c);
			}
		}
		else {
			--a;
			cd.toss(a, i);
		}
	}
	REP (i, q) {
		auto [type, a, b, c] = queries[i];
		if (type == 4 && !is_ans[i])
			ans.emplace_back(i, 0);
	}
		
	sort(ans.begin(), ans.end());
	for (auto [a, b] : ans)
		cout << b << '\n';
}

/*
 * Opis: O(q \log n) Link-Cut Tree z wyznaczaniem odległości między wierzchołkami, lca w zakorzenionym drzewie, dodawaniem na ścieżce, dodawaniem na poddrzewie, zwracaniem sumy na ścieżce, zwracaniem sumy na poddrzewie.
 *   Przepisać co się chce (logika lazy jest tylko w \texttt{AdditionalInfo}, można np. zostawić puste funkcje).
 *   Wywołać konstruktor, potem \texttt{set\_value} na wierzchołkach (aby się ustawiło, że nie-nil to nie-nil) i potem jazda.
 */

using T = pair<int, int>;
T merge(T a, T b) {
	if (a.second > b.second)
		return a;
	return b;
}
struct AdditionalInfo {
	static constexpr T neutral = pair(0, -1); // Remember that there is a nil vertex!
	T node_value = neutral, splay_value = neutral;//, splay_value_reversed = neutral;
	T splay_lazy = neutral; // lazy propagation on paths
	int splay_size = 0; // 0 because of nil
	T whole_subtree_lazy = neutral, whole_subtree_cancel = neutral; // lazy propagation on subtrees
	void set_value(T x) {
		node_value = splay_value = x;
		splay_size = 1;
	}
	void update_from_sons(AdditionalInfo &l, AdditionalInfo &r) {
		splay_value = merge(l.splay_value, merge(node_value, r.splay_value));
		splay_size = l.splay_size + 1 + r.splay_size;
	}
	void push_lazy(AdditionalInfo &l, AdditionalInfo &r, bool /*reversed children*/) {
		l.add_lazy_in_path(splay_lazy);
		r.add_lazy_in_path(splay_lazy);
		splay_lazy = neutral;
	}
	void cancel_subtree_lazy_from_parent(AdditionalInfo &parent) {
		whole_subtree_cancel = parent.whole_subtree_lazy;
	}
	void pull_lazy_from_parent(AdditionalInfo &parent) {
		if(splay_size == 0) // nil
			return;
		if (whole_subtree_cancel.second < parent.whole_subtree_lazy.second)
			add_lazy_in_subtree(parent.whole_subtree_lazy);
		cancel_subtree_lazy_from_parent(parent);
	}
	void add_lazy_in_path(T x) {
		splay_lazy = merge(splay_lazy, x);
		node_value = merge(node_value, x);
		splay_value = merge(splay_value, x);
	}
	void add_lazy_in_subtree(T x) {
		whole_subtree_lazy = merge(whole_subtree_lazy, x);
		node_value = merge(node_value, x);
		splay_value = merge(splay_value, x);
	}
};
struct Splay {
	struct Node {
		array<int, 2> child;
		int parent;
		int subsize_splay = 1;
		bool lazy_flip = false;
		AdditionalInfo info;
	};
	vector<Node> t;
	const int nil;
	Splay(int n)
	: t(n + 1), nil(n) {
		t[nil].subsize_splay = 0;
		for(Node &v : t)
			v.child[0] = v.child[1] = v.parent = nil;
	}
	void apply_lazy_and_push(int v) {
		auto &[l, r] = t[v].child;
		if(t[v].lazy_flip) {
			for(int c : {l, r})
				t[c].lazy_flip ^= 1;
			swap(l, r);
		}
		t[v].info.push_lazy(t[l].info, t[r].info, t[v].lazy_flip);
		for(int c : {l, r})
			if(c != nil)
				t[c].info.pull_lazy_from_parent(t[v].info);
		t[v].lazy_flip = false;
	}
	void update_from_sons(int v) {
		// assumes that v's info is pushed
		auto [l, r] = t[v].child;
		t[v].subsize_splay = t[l].subsize_splay + 1 + t[r].subsize_splay;
		for(int c : {l, r})
			apply_lazy_and_push(c);
		t[v].info.update_from_sons(t[l].info, t[r].info);
	}
	// After that, v is pushed and updated
	void splay(int v) {
		apply_lazy_and_push(v);
		auto set_child = [&](int x, int c, int d) {
			if(x != nil and d != -1)
				t[x].child[d] = c;
			if(c != nil) {
				t[c].parent = x;
				t[c].info.cancel_subtree_lazy_from_parent(t[x].info);
			}
		};
		auto get_dir = [&](int x) -> int {
			int p = t[x].parent;
			if(p == nil or (x != t[p].child[0] and x != t[p].child[1]))
				return -1;
			return t[p].child[1] == x;
		};
		auto rotate = [&](int x, int d) {
			int p = t[x].parent, c = t[x].child[d];
			assert(c != nil);
			set_child(p, c, get_dir(x));
			set_child(x, t[c].child[!d], d);
			set_child(c, x, !d);
			update_from_sons(x);
			update_from_sons(c);
		};
		while(get_dir(v) != -1) {
			int p = t[v].parent, pp = t[p].parent;
			array path_up = {v, p, pp, t[pp].parent};
			for(int i = ssize(path_up) - 1; i >= 0; --i) {
				if(i < ssize(path_up) - 1)
					t[path_up[i]].info.pull_lazy_from_parent(t[path_up[i + 1]].info);
				apply_lazy_and_push(path_up[i]);
			}
			int dp = get_dir(v), dpp = get_dir(p);
			if(dpp == -1)
				rotate(p, dp);
			else if(dp == dpp) {
				rotate(pp, dpp);
				rotate(p, dp);
			}
			else {
				rotate(p, dp);
				rotate(pp, dpp);
			}
		}
	}
};
struct LinkCut : Splay {
	LinkCut(int n) : Splay(n) {}
	// Cuts the path from x downward, creates path to root, splays x.
	int access(int x) {
		int v = x, cv = nil;
		for(; v != nil; cv = v, v = t[v].parent) {
			splay(v);
			int &right = t[v].child[1];
			right = cv;
			t[right].info.pull_lazy_from_parent(t[v].info);
			update_from_sons(v);
		}
		splay(x);
		return cv;
	}
	// Changes the root to v.
	// Warning: Linking, cutting, getting the distance, etc, changes the root.
	void reroot(int v) {
		access(v);
		t[v].lazy_flip ^= 1;
		apply_lazy_and_push(v);
	}
	// Returns the root of tree containing v.
	int get_leader(int v) {
		access(v);
		while(apply_lazy_and_push(v), t[v].child[0] != nil)
			v = t[v].child[0];
		splay(v);
		return v;
	}
	bool is_in_same_tree(int v, int u) {
		return get_leader(v) == get_leader(u);
	}
	// Assumes that v and u aren't in same tree and v != u.
	// Adds edge (v, u) to the forest.
	void link(int v, int u) {
		reroot(v);
		access(u);
		assert(t[v].parent == nil);
		t[v].parent = u;
		t[v].info.cancel_subtree_lazy_from_parent(t[u].info);
	}
	// Assumes that v and u are in same tree and v != u.
	// Cuts edge going from v to the subtree where is u
	// (in particular, if there is an edge (v, u), it deletes it).
	// Returns the cut parent.
	int cut(int v, int u) {
		reroot(u);
		access(v);
		int c = t[v].child[0];
		assert(t[c].parent == v);
		t[v].child[0] = nil;
		t[c].parent = nil;
		t[c].info.cancel_subtree_lazy_from_parent(t[nil].info);
		update_from_sons(v);
		while(apply_lazy_and_push(c), t[c].child[1] != nil)
			c = t[c].child[1];
		splay(c);
		return c;
	}
	// Assumes that v and u are in same tree.
	// Returns their LCA after a reroot operation.
	int lca(int root, int v, int u) {
		reroot(root);
		if(v == u)
			return v;
		access(v);
		return access(u);
	}
	// Assumes that v and u are in same tree.
	// Returns their distance (in number of edges).
	int dist(int v, int u) {
		reroot(v);
		access(u);
		return t[t[u].child[0]].subsize_splay;
	}
	// Applies function f on vertex v (useful for a single add/set operation)
	void apply_on_vertex(int v, function<void (AdditionalInfo&)> f) {
		access(v);
		f(t[v].info);
	}
	// Assumes that v and u are in same tree.
	// Adds val to each vertex in path from v to u.
	void add_on_path(int v, int u, T val) {
		reroot(v);
		access(u);
		t[u].info.add_lazy_in_path(val);
	}
	// Assumes that v and u are in same tree.
	// Adds val to each vertex in subtree of v that doesn't have u.
	void add_on_subtree(int v, int u, T val) {
		u = cut(v, u);
		t[v].info.add_lazy_in_subtree(val);
		link(v, u);
	}
};

void sub2(int n, vector<tuple<int, int, int>> edges, vector<tuple<int, int, LL, int>> queries) {
	LinkCut cat(n);
	for (auto [a, b, d] : edges) {
		--a;
		--b;
		cat.link(a, b);
	}
	int tim = 0;
	for (auto [type, a, b, c] : queries) {
		++tim;
		if (type == 1) {
			int u = a - 1;
			int v = b - 1;
			cat.link(u, v);
		}
		else if (type == 2) {
			int u = a - 1;
			int v = b - 1;
			cat.cut(u, v);
		}
		else if (type == 3) {
			int v = a - 1;
			cat.reroot(v);
			cat.t[v].info.add_lazy_in_subtree(pair(c, tim));
		}
		else {
			int v = a - 1;
			cat.reroot(v);
			cout << cat.t[v].info.node_value.first << '\n';
		}
	}
}

int main() {
	cin.tie(0)->sync_with_stdio(0);
	int n, m, q;
	cin >> n >> m >> q;
	vector<tuple<int, int, int>> edges(m);
	for (auto &[a, b, c] : edges)
		cin >> a >> b >> c;
	vector<tuple<int, int, LL, int>> queries;
	REP (xd, q) {
		int type;
		cin >> type;
		if (type == 1) {
			int a, b, d;
			cin >> a >> b >> d;
			queries.emplace_back(type, a, b, d);
		}
		else if (type == 2) {
			int a, b;
			cin >> a >> b;
			queries.emplace_back(type, a, b, 0);
		}
		else if (type == 3) {
			int a;
			LL b;
			int c;
			cin >> a >> b >> c;
			queries.emplace_back(type, a, b, c);
		}
		else {
			int a;
			cin >> a;
			queries.emplace_back(type, a, 0, 0);
		}
	}
	bool is_first = m == (n - 1);
	for (auto [type, a, b, c] : queries)
		if (type == 1 || type == 2)
			is_first = false;
	if (is_first) {
		sub1(n, edges, queries);
		return 0;
	}
	bool is_second = true;
	const LL Z = 1'000'000'000'000'000ll;
	for (auto [type, a, b, c] : queries)
		if (type == 3 && b != Z)
			is_second = false;
	if (is_second) {
		sub2(n, edges, queries);
		return 0;
	}
	brute(n, edges, queries);
}