// // Created by piotr on 16.03.2024. // #include <algorithm> #include <cassert> #include <bitset> #include <cstdio> #include <list> #include <iostream> #include <queue> #include <set> #include <tuple> #include <vector> using Edge = std::pair<int,int>; using EdgeVector = std::vector<Edge>; const signed char NONE = 0; const signed char BLACK = -1; // a bit racist const signed char WHITE = +1; std::vector<EdgeVector::iterator> begins; std::vector<EdgeVector::iterator> ends; const long long MODULO = 1000000007; std::tuple<long long, long long, long long> extended_gcd(long long a, long long b) { if (b == 0) { return {1, 0, a}; } auto [x1, y1, gcd] = extended_gcd(b, a % b); return {y1, x1 - (a / b) * y1, gcd}; } long long mod_inverse(long long a, long long m = MODULO) { long long x, y, gcd; std::tie(x, y, gcd) = extended_gcd(a, m); if (gcd != 1) { return -1; } return (x % m + m) % m; } long long mod_multiply(long long a, long long b, long long m = MODULO) { return (a * b) % m; } bool is_special(int root, std::vector<signed char>& states, std::list<int>& nodes) { std::queue<int> bfs; states[root] = WHITE; bfs.push(root); bool is_special_graph = 0; while (!bfs.empty()) { const int here = bfs.front(); bfs.pop(); nodes.push_back(here); for (EdgeVector::iterator it=begins[here]; it!=ends[here]; ++it) { const int there = it->second; if (states[there]) { if (states[there] == states[here]) { is_special_graph = true; } } else { states[there] = -states[here]; bfs.push(there); } } } return is_special_graph; } int main() { int N, M; assert(scanf("%d%d", &N, &M) == 2); std::vector<int> configuration(N); for (int n=0; n<N; ++n) { assert(scanf("%d", &configuration[n]) == 1); } EdgeVector edges; edges.reserve(M); for (int m=0; m<M; ++m) { int a, b; assert(scanf("%d%d", &a, &b) == 2); edges.push_back({a-1, b-1}); edges.push_back({b-1, a-1}); } std::sort(edges.begin(), edges.end()); std::vector<int> edge_counts(N, 0); for (const Edge& edge : edges) { edge_counts[edge.first]++; } begins.resize(N); ends.resize(N); EdgeVector::iterator it = edges.begin(); for (int i=0; i<N; ++i) { begins[i] = it; it += edge_counts[i]; ends[i] = it; } std::vector<long long> factorials(N+1); std::vector<long long> powers_of_two(N+1); factorials[0] = 1; powers_of_two[0] = 1; for (int i=1; i<=N; ++i) { factorials[i] = mod_multiply(factorials[i-1], i); powers_of_two[i] = mod_multiply(powers_of_two[i-1], 2); } long long result = 1; std::vector<signed char> states(N, NONE); for (int root=0; root<N; ++root) { if (states[root]) { continue; } std::list<int> nodes; if (is_special(root, states, nodes)) { int count = nodes.size(); result = mod_multiply(result, powers_of_two[count - 1]); } else { int count = nodes.size(); int checksum = 0; for (int node : nodes) { checksum += states[node] * (2 * configuration[node] - 1); } int bottom = (count - abs(checksum)) / 2; result = mod_multiply(result, mod_multiply(factorials[count], mod_inverse( mod_multiply(factorials[count - bottom], factorials[bottom]) )) ); } } printf("%lld\n", result); }
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 | // // Created by piotr on 16.03.2024. // #include <algorithm> #include <cassert> #include <bitset> #include <cstdio> #include <list> #include <iostream> #include <queue> #include <set> #include <tuple> #include <vector> using Edge = std::pair<int,int>; using EdgeVector = std::vector<Edge>; const signed char NONE = 0; const signed char BLACK = -1; // a bit racist const signed char WHITE = +1; std::vector<EdgeVector::iterator> begins; std::vector<EdgeVector::iterator> ends; const long long MODULO = 1000000007; std::tuple<long long, long long, long long> extended_gcd(long long a, long long b) { if (b == 0) { return {1, 0, a}; } auto [x1, y1, gcd] = extended_gcd(b, a % b); return {y1, x1 - (a / b) * y1, gcd}; } long long mod_inverse(long long a, long long m = MODULO) { long long x, y, gcd; std::tie(x, y, gcd) = extended_gcd(a, m); if (gcd != 1) { return -1; } return (x % m + m) % m; } long long mod_multiply(long long a, long long b, long long m = MODULO) { return (a * b) % m; } bool is_special(int root, std::vector<signed char>& states, std::list<int>& nodes) { std::queue<int> bfs; states[root] = WHITE; bfs.push(root); bool is_special_graph = 0; while (!bfs.empty()) { const int here = bfs.front(); bfs.pop(); nodes.push_back(here); for (EdgeVector::iterator it=begins[here]; it!=ends[here]; ++it) { const int there = it->second; if (states[there]) { if (states[there] == states[here]) { is_special_graph = true; } } else { states[there] = -states[here]; bfs.push(there); } } } return is_special_graph; } int main() { int N, M; assert(scanf("%d%d", &N, &M) == 2); std::vector<int> configuration(N); for (int n=0; n<N; ++n) { assert(scanf("%d", &configuration[n]) == 1); } EdgeVector edges; edges.reserve(M); for (int m=0; m<M; ++m) { int a, b; assert(scanf("%d%d", &a, &b) == 2); edges.push_back({a-1, b-1}); edges.push_back({b-1, a-1}); } std::sort(edges.begin(), edges.end()); std::vector<int> edge_counts(N, 0); for (const Edge& edge : edges) { edge_counts[edge.first]++; } begins.resize(N); ends.resize(N); EdgeVector::iterator it = edges.begin(); for (int i=0; i<N; ++i) { begins[i] = it; it += edge_counts[i]; ends[i] = it; } std::vector<long long> factorials(N+1); std::vector<long long> powers_of_two(N+1); factorials[0] = 1; powers_of_two[0] = 1; for (int i=1; i<=N; ++i) { factorials[i] = mod_multiply(factorials[i-1], i); powers_of_two[i] = mod_multiply(powers_of_two[i-1], 2); } long long result = 1; std::vector<signed char> states(N, NONE); for (int root=0; root<N; ++root) { if (states[root]) { continue; } std::list<int> nodes; if (is_special(root, states, nodes)) { int count = nodes.size(); result = mod_multiply(result, powers_of_two[count - 1]); } else { int count = nodes.size(); int checksum = 0; for (int node : nodes) { checksum += states[node] * (2 * configuration[node] - 1); } int bottom = (count - abs(checksum)) / 2; result = mod_multiply(result, mod_multiply(factorials[count], mod_inverse( mod_multiply(factorials[count - bottom], factorials[bottom]) )) ); } } printf("%lld\n", result); } |