// clang-format off #pragma GCC optimize("O3,unroll-loops") // #pragma GCC target("avx2,bmi,bmi2,lzcnt,popcnt") #include <bits/stdc++.h> // #include <ext/pb_ds/assoc_container.hpp> // #include <ext/pb_ds/tree_policy.hpp> using namespace std; template<class Fun> class y_combinator_result { Fun fun_; public: template<class T> explicit y_combinator_result(T &&fun): fun_(forward<T>(fun)) {} template<class ...Args> decltype(auto) operator()(Args &&...args) { return fun_(ref(*this), forward<Args>(args)...); } }; template<class Fun> decltype(auto) y_combinator(Fun &&fun) { return y_combinator_result<decay_t<Fun>>(forward<Fun>(fun)); } // using namespace __gnu_pbds; // template <typename T> using ordered_set = tree<T, null_type, less<T>, rb_tree_tag, tree_order_statistics_node_update>; #define sim template < class c #define ris return * this #define dor > debug & operator << #define eni(x) sim > typename enable_if<sizeof dud<c>(0) x 1, debug&>::type operator<<(c i) { sim > struct rge { c b, e; }; sim > rge<c> range(c i, c j) { return rge<c>{i, j}; } sim > auto dud(c* x) -> decltype(cerr << *x, 0); sim > char dud(...); struct debug { #ifdef XOX ~debug() { cerr << endl; } eni(!=) cerr << boolalpha << i; ris; } eni(==) ris << range(begin(i), end(i)); } sim, class b dor(pair < b, c > d) { ris << "(" << d.first << ", " << d.second << ")"; } sim dor(rge<c> d) { *this << "["; for (auto it = d.b; it != d.e; ++it) *this << ", " + 2 * (it == d.b) << *it; ris << "]"; } #else sim dor(const c&) { ris; } #endif }; #define imie(...) " [" << #__VA_ARGS__ ": " << (__VA_ARGS__) << "] " struct { template <class T> operator T() { T x; cin >> x; return x; } } in; #define endl '\n' #define pb emplace_back #define all(x) begin(x), end(x) #define sz(x) (int)(x).size() using i64 = long long; template <class T> using vt = vector<T>; template <class T, size_t n> using ar = array<T, n>; // #define int long long // clang-format on struct vtt { // [-x, x] int x; vt<int> v; vtt(int x_) : x(x_), v(2 * x_ + 1) {} int &operator[](int i) { return v[i + x]; } int operator[](int i) const { return v[i + x]; } }; void solve() { int n = in; vt<int> ar(n + 1); for (int i = 1; i <= n; i++) { ar[i] = in; ar[i] += ar[i - 1]; } auto daj = [&](int l, int r) { return ar[r] - ar[l - 1]; }; const int mxa = 20'000; vt<vt<int>> pytki(n + 1); i64 ans = 0; vtt sumy(3 * n * mxa), sumykwadrat(2 * n * mxa); for (int i = 1; i <= n; i++) { sumy[ar[i]]++; } for (int i = 1; i <= n; i++) { for (int j = i; j <= n; j++) { sumykwadrat[daj(i, j)]++; } } for (int i = 1; i <= n; i++) { for (int j = 1; j <= n; j++) { for (int k = j; k <= n; k++) { int need = -(daj(j, k) - ar[i - 1]); pytki[i].push_back(need); { // odejmij case gdy [j, k] == drugi int need_sec = -(2 * daj(j, k) - ar[i - 1]); ans -= sumy[need_sec]; } { // odejmij case gdy [j, k] j == i if (i == j) { int need_sec = -(2 * daj(j, k)); ans -= sumykwadrat[need_sec]; } } { // odejmij case gdy [i, ?] == drugi int need_sec = -(daj(j, k)); if (need_sec % 2 == 0) { need_sec /= 2; need_sec = ar[i - 1] + need_sec; ans -= sumy[need_sec]; } } { // co z case gdy wszystko jest rowne? // chyba odjelismy go trzy razy if (i == j && 3 * daj(j, k) == 0) { ans += 2; } } } } sumy[ar[i]]--; } debug() << imie(ans); for (int i = n; i >= 1; i--) { for (int a = 1; a <= n; a++) { for (int b = a; b <= n; b++) { sumy[daj(a, b) + ar[i]]++; } } for (auto x : pytki[i]) { ans += sumy[x]; } } cout << ans / 6 << endl; } int32_t main() { cin.tie(0)->sync_with_stdio(0); int t = 1; // int t = in; while (t--) { solve(); } }
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 | // clang-format off #pragma GCC optimize("O3,unroll-loops") // #pragma GCC target("avx2,bmi,bmi2,lzcnt,popcnt") #include <bits/stdc++.h> // #include <ext/pb_ds/assoc_container.hpp> // #include <ext/pb_ds/tree_policy.hpp> using namespace std; template<class Fun> class y_combinator_result { Fun fun_; public: template<class T> explicit y_combinator_result(T &&fun): fun_(forward<T>(fun)) {} template<class ...Args> decltype(auto) operator()(Args &&...args) { return fun_(ref(*this), forward<Args>(args)...); } }; template<class Fun> decltype(auto) y_combinator(Fun &&fun) { return y_combinator_result<decay_t<Fun>>(forward<Fun>(fun)); } // using namespace __gnu_pbds; // template <typename T> using ordered_set = tree<T, null_type, less<T>, rb_tree_tag, tree_order_statistics_node_update>; #define sim template < class c #define ris return * this #define dor > debug & operator << #define eni(x) sim > typename enable_if<sizeof dud<c>(0) x 1, debug&>::type operator<<(c i) { sim > struct rge { c b, e; }; sim > rge<c> range(c i, c j) { return rge<c>{i, j}; } sim > auto dud(c* x) -> decltype(cerr << *x, 0); sim > char dud(...); struct debug { #ifdef XOX ~debug() { cerr << endl; } eni(!=) cerr << boolalpha << i; ris; } eni(==) ris << range(begin(i), end(i)); } sim, class b dor(pair < b, c > d) { ris << "(" << d.first << ", " << d.second << ")"; } sim dor(rge<c> d) { *this << "["; for (auto it = d.b; it != d.e; ++it) *this << ", " + 2 * (it == d.b) << *it; ris << "]"; } #else sim dor(const c&) { ris; } #endif }; #define imie(...) " [" << #__VA_ARGS__ ": " << (__VA_ARGS__) << "] " struct { template <class T> operator T() { T x; cin >> x; return x; } } in; #define endl '\n' #define pb emplace_back #define all(x) begin(x), end(x) #define sz(x) (int)(x).size() using i64 = long long; template <class T> using vt = vector<T>; template <class T, size_t n> using ar = array<T, n>; // #define int long long // clang-format on struct vtt { // [-x, x] int x; vt<int> v; vtt(int x_) : x(x_), v(2 * x_ + 1) {} int &operator[](int i) { return v[i + x]; } int operator[](int i) const { return v[i + x]; } }; void solve() { int n = in; vt<int> ar(n + 1); for (int i = 1; i <= n; i++) { ar[i] = in; ar[i] += ar[i - 1]; } auto daj = [&](int l, int r) { return ar[r] - ar[l - 1]; }; const int mxa = 20'000; vt<vt<int>> pytki(n + 1); i64 ans = 0; vtt sumy(3 * n * mxa), sumykwadrat(2 * n * mxa); for (int i = 1; i <= n; i++) { sumy[ar[i]]++; } for (int i = 1; i <= n; i++) { for (int j = i; j <= n; j++) { sumykwadrat[daj(i, j)]++; } } for (int i = 1; i <= n; i++) { for (int j = 1; j <= n; j++) { for (int k = j; k <= n; k++) { int need = -(daj(j, k) - ar[i - 1]); pytki[i].push_back(need); { // odejmij case gdy [j, k] == drugi int need_sec = -(2 * daj(j, k) - ar[i - 1]); ans -= sumy[need_sec]; } { // odejmij case gdy [j, k] j == i if (i == j) { int need_sec = -(2 * daj(j, k)); ans -= sumykwadrat[need_sec]; } } { // odejmij case gdy [i, ?] == drugi int need_sec = -(daj(j, k)); if (need_sec % 2 == 0) { need_sec /= 2; need_sec = ar[i - 1] + need_sec; ans -= sumy[need_sec]; } } { // co z case gdy wszystko jest rowne? // chyba odjelismy go trzy razy if (i == j && 3 * daj(j, k) == 0) { ans += 2; } } } } sumy[ar[i]]--; } debug() << imie(ans); for (int i = n; i >= 1; i--) { for (int a = 1; a <= n; a++) { for (int b = a; b <= n; b++) { sumy[daj(a, b) + ar[i]]++; } } for (auto x : pytki[i]) { ans += sumy[x]; } } cout << ans / 6 << endl; } int32_t main() { cin.tie(0)->sync_with_stdio(0); int t = 1; // int t = in; while (t--) { solve(); } } |