#include <cstdio> #include <vector> #include <queue> using namespace std; vector<int> edges[200001]; int vertex_parity[200001]; // 0, 1, 2=unknown int blackness[200001]; int factorials[200001]; struct nextthing{ int x; int parity; }; void all_factorials(int n) { long long res = 1; factorials[0] = 1; factorials[1] = 1; for (int i = 2; i <= n; ++i) { res *= i; res %= 1'000'000'007LL; factorials[i] = int(res); } } long long odw_modulo(long long k) { long long r = 1'000'000'007LL; long long newr = k; long long t = 0; long long newt = 1; long long temp; while (newr != 0) { long long quotient = r / newr; temp = newt; newt = t - (quotient * newt); t = temp; temp = newr; newr = r - (quotient * newr); r = temp; } while (t < 0) { t += 1'000'000'007LL; } return t; } long long binomial(int n, int k) { // printf("COMPUTING BINOMIAL n choose k\n"); long long res = factorials[n]; long long lowpart = factorials[k]; lowpart *= factorials[n-k]; lowpart %= 1'000'000'007LL; // printf("n! = %lld\n", res); // printf("k! * (n-k)! = %lld\n", lowpart); res *= odw_modulo(lowpart); res %= 1'000'000'007LL; // printf("RESULT: %lld\n", res); return res; } long long process_component(int x, int parity) { queue<nextthing> stuff; int counts[2][2]; // counts[a][b] = number of a color in b parity counts[0][0] = 0; counts[0][1] = 0; counts[1][0] = 0; counts[1][1] = 0; int component_size = 0; bool everything = false; nextthing firstthing; firstthing.x = x; firstthing.parity = parity; vertex_parity[x] = parity; stuff.push(firstthing); while (!stuff.empty()) { nextthing topstuff = stuff.front(); stuff.pop(); int current_parity = topstuff.parity; counts[blackness[topstuff.x]][current_parity]++; component_size++; for (int i = 0; i < edges[topstuff.x].size(); ++i) { int n = edges[topstuff.x][i]; if (vertex_parity[n] == 2) { int n_parity = 1 - current_parity; nextthing newthing; newthing.x = n; newthing.parity = n_parity; vertex_parity[n] = n_parity; stuff.push(newthing); } else if (vertex_parity[n] == current_parity) { // nothing is true, everything is permitted everything = true; // don't break cause we still need to know component size } } } if (component_size == 1) { // printf("SIZE 1 COMPONENT\n"); // just to remove the "what if one partition is empty" headache return 1; } if (everything) { // printf("EVERYTHING COMPONENT "); // return 2^(n-1) where n is component size // i guess we can just compute it in O(n) cause it will amortize int result = 1; for (int i = 1; i < component_size; ++i) { result *= 2; result %= 1'000'000'007; } // printf("OF RESULT %d (SIZE %d)\n", result, component_size); return result; } else { // printf("BIPARTITE COMPONENT\n"); // graph is bipartite. // 1. compute whiteness ranges // 2. compute possibility quotients int maxwhites[2]; // max number of 0s in x parity int minwhites[2]; // min number of 0s in x parity int parity_total[2]; // total vertices in x parity parity_total[0] = counts[0][0] + counts[1][0]; parity_total[1] = counts[0][1] + counts[1][1]; // turn all to black - counts[0][x] is now minimum number of 0s in x parity int convertible_whites = min(counts[0][0], counts[0][1]); counts[1][0] += convertible_whites; counts[0][0] -= convertible_whites; counts[1][1] += convertible_whites; counts[0][1] -= convertible_whites; minwhites[0] = counts[0][0]; minwhites[1] = counts[0][1]; // now turn all to white int convertible_blacks = min(counts[1][0], counts[1][1]); maxwhites[0] = counts[0][0] + convertible_blacks; maxwhites[1] = counts[0][1] + convertible_blacks; long long result = 0; int range = maxwhites[0] - minwhites[0]; // sum of all over whites foreach possible white range for(int i = 0; i <= range; ++i) { // printf("LEFTSIDE : %2d whites out of %2d total\n", i+minwhites[0], parity_total[0]); // printf("RIGHTSIDE: %2d whites out of %2d total\n", i+minwhites[1], parity_total[1]); long long leftside = binomial(parity_total[0], i + minwhites[0]); long long rightside = binomial(parity_total[1], i + minwhites[1]); result += leftside * rightside; result %= 1'000'000'007; // printf("ADDING %lld TO RESULT FOR %lld TOTAL\n", leftside * rightside, result); } return result; } } int main() { /* ODW_MODULO TESTS printf("%lld %lld\n", odw_modulo(1), odw_modulo(2)); for (int i = 1; i < 1'000'000'007; ++i) { long long z = odw_modulo(i); long long myown = (i * z) % 1'000'000'007; if (myown != 1) { printf("ERROR FOR %d !\n", i); } if (i % 10'000'000 == 0){ printf("%10d\n", i); } } printf("All done\n"); return 0; /* END OF ODW_MODULO TESTS */ /* BINOMIAL TESTS all_factorials(100); printf("%3d\n", binomial(1, 1)); printf("%3d %3d\n", binomial(2, 1), binomial(2, 2)); printf("%3d %3d %3d\n", binomial(3, 1), binomial(3, 2), binomial(3, 3)); printf("%3d %3d %3d %3d\n", binomial(4, 1), binomial(4, 2), binomial(4, 3), binomial(4, 4)); printf("%3d %3d %3d %3d %3d\n", binomial(5, 1), binomial(5, 2), binomial(5, 3), binomial(5, 4), binomial(5, 5)); printf("%3d %3d %3d %3d %3d %3d\n", binomial(6, 1), binomial(6, 2), binomial(6, 3), binomial(6, 4), binomial(6, 5), binomial(6, 6)); return 0; /* END OF BINOMIAL TESTS */ int n, m; scanf("%d %d", &n, &m); all_factorials(n); for (int i = 0; i < n; ++i) { int x; scanf("%d", &x); blackness[i] = x; vertex_parity[i] = 2; } for (int i = 0; i < m; ++i) { int a, b; scanf("%d %d", &a, &b); edges[a-1].push_back(b-1); edges[b-1].push_back(a-1); } long long total_result = 1; for(int i = 0; i < n; ++i) { if (vertex_parity[i] == 2) { // printf("COMPUTING %d COMPONENT\n", i); long long result = process_component(i, 0); total_result *= result; total_result %= 1'000'000'007; } } printf("%lld\n", total_result); return 0; }
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 | #include <cstdio> #include <vector> #include <queue> using namespace std; vector<int> edges[200001]; int vertex_parity[200001]; // 0, 1, 2=unknown int blackness[200001]; int factorials[200001]; struct nextthing{ int x; int parity; }; void all_factorials(int n) { long long res = 1; factorials[0] = 1; factorials[1] = 1; for (int i = 2; i <= n; ++i) { res *= i; res %= 1'000'000'007LL; factorials[i] = int(res); } } long long odw_modulo(long long k) { long long r = 1'000'000'007LL; long long newr = k; long long t = 0; long long newt = 1; long long temp; while (newr != 0) { long long quotient = r / newr; temp = newt; newt = t - (quotient * newt); t = temp; temp = newr; newr = r - (quotient * newr); r = temp; } while (t < 0) { t += 1'000'000'007LL; } return t; } long long binomial(int n, int k) { // printf("COMPUTING BINOMIAL n choose k\n"); long long res = factorials[n]; long long lowpart = factorials[k]; lowpart *= factorials[n-k]; lowpart %= 1'000'000'007LL; // printf("n! = %lld\n", res); // printf("k! * (n-k)! = %lld\n", lowpart); res *= odw_modulo(lowpart); res %= 1'000'000'007LL; // printf("RESULT: %lld\n", res); return res; } long long process_component(int x, int parity) { queue<nextthing> stuff; int counts[2][2]; // counts[a][b] = number of a color in b parity counts[0][0] = 0; counts[0][1] = 0; counts[1][0] = 0; counts[1][1] = 0; int component_size = 0; bool everything = false; nextthing firstthing; firstthing.x = x; firstthing.parity = parity; vertex_parity[x] = parity; stuff.push(firstthing); while (!stuff.empty()) { nextthing topstuff = stuff.front(); stuff.pop(); int current_parity = topstuff.parity; counts[blackness[topstuff.x]][current_parity]++; component_size++; for (int i = 0; i < edges[topstuff.x].size(); ++i) { int n = edges[topstuff.x][i]; if (vertex_parity[n] == 2) { int n_parity = 1 - current_parity; nextthing newthing; newthing.x = n; newthing.parity = n_parity; vertex_parity[n] = n_parity; stuff.push(newthing); } else if (vertex_parity[n] == current_parity) { // nothing is true, everything is permitted everything = true; // don't break cause we still need to know component size } } } if (component_size == 1) { // printf("SIZE 1 COMPONENT\n"); // just to remove the "what if one partition is empty" headache return 1; } if (everything) { // printf("EVERYTHING COMPONENT "); // return 2^(n-1) where n is component size // i guess we can just compute it in O(n) cause it will amortize int result = 1; for (int i = 1; i < component_size; ++i) { result *= 2; result %= 1'000'000'007; } // printf("OF RESULT %d (SIZE %d)\n", result, component_size); return result; } else { // printf("BIPARTITE COMPONENT\n"); // graph is bipartite. // 1. compute whiteness ranges // 2. compute possibility quotients int maxwhites[2]; // max number of 0s in x parity int minwhites[2]; // min number of 0s in x parity int parity_total[2]; // total vertices in x parity parity_total[0] = counts[0][0] + counts[1][0]; parity_total[1] = counts[0][1] + counts[1][1]; // turn all to black - counts[0][x] is now minimum number of 0s in x parity int convertible_whites = min(counts[0][0], counts[0][1]); counts[1][0] += convertible_whites; counts[0][0] -= convertible_whites; counts[1][1] += convertible_whites; counts[0][1] -= convertible_whites; minwhites[0] = counts[0][0]; minwhites[1] = counts[0][1]; // now turn all to white int convertible_blacks = min(counts[1][0], counts[1][1]); maxwhites[0] = counts[0][0] + convertible_blacks; maxwhites[1] = counts[0][1] + convertible_blacks; long long result = 0; int range = maxwhites[0] - minwhites[0]; // sum of all over whites foreach possible white range for(int i = 0; i <= range; ++i) { // printf("LEFTSIDE : %2d whites out of %2d total\n", i+minwhites[0], parity_total[0]); // printf("RIGHTSIDE: %2d whites out of %2d total\n", i+minwhites[1], parity_total[1]); long long leftside = binomial(parity_total[0], i + minwhites[0]); long long rightside = binomial(parity_total[1], i + minwhites[1]); result += leftside * rightside; result %= 1'000'000'007; // printf("ADDING %lld TO RESULT FOR %lld TOTAL\n", leftside * rightside, result); } return result; } } int main() { /* ODW_MODULO TESTS printf("%lld %lld\n", odw_modulo(1), odw_modulo(2)); for (int i = 1; i < 1'000'000'007; ++i) { long long z = odw_modulo(i); long long myown = (i * z) % 1'000'000'007; if (myown != 1) { printf("ERROR FOR %d !\n", i); } if (i % 10'000'000 == 0){ printf("%10d\n", i); } } printf("All done\n"); return 0; /* END OF ODW_MODULO TESTS */ /* BINOMIAL TESTS all_factorials(100); printf("%3d\n", binomial(1, 1)); printf("%3d %3d\n", binomial(2, 1), binomial(2, 2)); printf("%3d %3d %3d\n", binomial(3, 1), binomial(3, 2), binomial(3, 3)); printf("%3d %3d %3d %3d\n", binomial(4, 1), binomial(4, 2), binomial(4, 3), binomial(4, 4)); printf("%3d %3d %3d %3d %3d\n", binomial(5, 1), binomial(5, 2), binomial(5, 3), binomial(5, 4), binomial(5, 5)); printf("%3d %3d %3d %3d %3d %3d\n", binomial(6, 1), binomial(6, 2), binomial(6, 3), binomial(6, 4), binomial(6, 5), binomial(6, 6)); return 0; /* END OF BINOMIAL TESTS */ int n, m; scanf("%d %d", &n, &m); all_factorials(n); for (int i = 0; i < n; ++i) { int x; scanf("%d", &x); blackness[i] = x; vertex_parity[i] = 2; } for (int i = 0; i < m; ++i) { int a, b; scanf("%d %d", &a, &b); edges[a-1].push_back(b-1); edges[b-1].push_back(a-1); } long long total_result = 1; for(int i = 0; i < n; ++i) { if (vertex_parity[i] == 2) { // printf("COMPUTING %d COMPONENT\n", i); long long result = process_component(i, 0); total_result *= result; total_result %= 1'000'000'007; } } printf("%lld\n", total_result); return 0; } |