1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
#include <bits/stdc++.h>

using namespace std;

#define ll long long

#define rng(i,a,b) for(int i=int(a);i<int(b);i++)
#define rep(i,b) rng(i,0,b)

typedef vector<int> vi;
typedef vector<vi> vvi;
typedef vector<vvi> vvvi;

typedef vector<ll> vl;
typedef vector<vl> vvl;
typedef vector<vvl> vvvl;

typedef pair<int,int> ii;

template<class t> using vc=vector<t>;
template<class t> using vvc=vc<vc<t>>;

const int MOD = 1e9+7;

ll read(){
    ll i;
    cin>>i;
    return i;
}

vi readvi(int n,int off=0,int shift=0){
    vi v(n+shift);
    rep(i,shift)v[i]=0;
    rep(i,n)v[i+shift]=read()+off;
    return v;
}

void YesNo(bool condition, bool do_exit=true) {
    if (condition)
        cout << "Yes" << endl;
    else
        cout << "No" << endl;
    if (do_exit)
        exit(0);
}


//a^b mod m, log(b) operations.
//assumes a*m fits long long.
long long binpow(long long a, long long b, long long m) {
    a %= m;
    long long res = 1;
    while (b > 0) {
        if (b & 1)
            res = res * a % m;
        a = a * a % m;
        b >>= 1;
    }
    return res;
}

//a^b mod m for prime m (by Fermat's little thm
ll prime_binpow(ll a, ll b, ll m) {
    return binpow (a, b%(m-1), m);
}

//modular inverse of a, using Fermat's little thm
ll inverse(ll a, ll m) {
    return binpow (a, m-2, m);
}

vl get_factorials_modulo(int n, int m = MOD) {
    vl res;
    res.push_back(1);
    rng(i,1,n+1)
        res.push_back((res.back()*i) % m);
    return res;
}

ll binom_modulo(int n, int k, vl & fac, int m = MOD) {
    ll res = fac[n];
    res = (res * inverse(fac[k],m)) % MOD;
    res = (res * inverse(fac[n-k],m)) % MOD;
    return res;
}

int main(void ) {
    ios::sync_with_stdio(false);
    cin.tie(NULL);

    int n,m;
    cin >> n >> m;

    vl fac = get_factorials_modulo(n);

    vi bits = readvi(n);

    vvi neighbors(n);

    rep(i,m) {
        int a,b;
        cin >> a >> b;
        --a; --b;
        neighbors[a].push_back(b);
        neighbors[b].push_back(a);
    }

    vector<char> color(n, -1);

    ll res = 1;
    rep(i,n)
        if (color[i] == -1) {
            color[i] = 0;
            bool bipartite = true;
            stack<int> s;
            s.push(i);
            int size[2] = {1, 0};
            int ones[2] = {bits[i], 0};
            while (not s.empty()) {
                int v = s.top();
                s.pop();
                for (int w : neighbors[v])
                    if (color[w] == color[v])
                        bipartite = false;
                    else
                        if (color[w] == -1) {
                            color[w] = 1-color[v];
                            s.push(w);
                            ++size[color[w]];
                            ones[color[w]] += bits[w];
                        }
            }

            ll local_res = 0;
            if (not bipartite) {
                int num_ones = ones[0] + ones[1];
                int comp_size = size[0]+size[1];
                for (int k = num_ones % 2; k <= comp_size; k += 2)
                    local_res = (local_res + binom_modulo(size[0] + size[1], k, fac)) % MOD;
            }
            else {
                // bipartite
                int a;
                if (ones[0] >= ones[1])
                    a = 0;
                else
                    a = 1;
                int b = 1-a;

                int t = ones[a] - ones[b];
                rep(k,min(size[a]-t,size[b])+1)
                    local_res = (local_res + binom_modulo(size[a],t+k,fac) * binom_modulo(size[b],k,fac)) % MOD;
            }
            res = (res * local_res) % MOD;

        }

    cout << res << endl;


    return 0;
}