1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
#ifndef TSL_HOPSCOTCH_MAP_H
#define TSL_HOPSCOTCH_MAP_H
#include <algorithm>
#include <cstddef>
#include <functional>
#include <initializer_list>
#include <list>
#include <memory>
#include <type_traits>
#include <utility>
#ifndef TSL_HOPSCOTCH_HASH_H
#define TSL_HOPSCOTCH_HASH_H
#include <algorithm>
#include <cassert>
#include <cmath>
#include <cstddef>
#include <cstdint>
#include <functional>
#include <initializer_list>
#include <iterator>
#include <limits>
#include <memory>
#include <new>
#include <stdexcept>
#include <tuple>
#include <type_traits>
#include <utility>
#include <vector>
#ifndef TSL_HOPSCOTCH_GROWTH_POLICY_H
#define TSL_HOPSCOTCH_GROWTH_POLICY_H
#include <algorithm>
#include <array>
#include <climits>
#include <cmath>
#include <cstddef>
#include <cstdint>
#include <iterator>
#include <limits>
#include <ratio>
#include <stdexcept>
#ifdef TSL_DEBUG
#define tsl_hh_assert(expr) assert(expr)
#else
#define tsl_hh_assert(expr) (static_cast<void>(0))
#endif
#if (defined(__cpp_exceptions) || defined(__EXCEPTIONS) || \
     (defined(_MSC_VER) && defined(_CPPUNWIND))) && \
    !defined(TSL_NO_EXCEPTIONS)
#define TSL_HH_THROW_OR_TERMINATE(ex, msg) throw ex(msg)
#else
#define TSL_HH_NO_EXCEPTIONS
#include <exception>
#ifdef TSL_DEBUG
#include <iostream>
#define TSL_HH_THROW_OR_TERMINATE(ex, msg) \
  do {                                     \
    std::cerr << msg << std::endl;         \
    std::terminate();                      \
  } while (0)
#else
#define TSL_HH_THROW_OR_TERMINATE(ex, msg) std::terminate()
#endif
#endif
namespace tsl {
    namespace hh {
        template<std::size_t GrowthFactor>
        class power_of_two_growth_policy {
        public:
            explicit power_of_two_growth_policy(std::size_t &min_bucket_count_in_out) {
                if (min_bucket_count_in_out > max_bucket_count()) {
                    TSL_HH_THROW_OR_TERMINATE(std::length_error, "The hash table exceeds its maximum size.");
                }
                if (min_bucket_count_in_out > 0) {
                    min_bucket_count_in_out = round_up_to_power_of_two(min_bucket_count_in_out);
                    m_mask = min_bucket_count_in_out - 1;
                } else {
                    m_mask = 0;
                }
            }
            std::size_t bucket_for_hash(std::size_t hash) const noexcept {
                return hash & m_mask;
            }
            std::size_t next_bucket_count() const {
                if ((m_mask + 1) > max_bucket_count() / GrowthFactor) {
                    TSL_HH_THROW_OR_TERMINATE(std::length_error, "The hash table exceeds its maximum size.");
                }
                return (m_mask + 1) * GrowthFactor;
            }
            std::size_t max_bucket_count() const {
                return (std::numeric_limits<std::size_t>::max() / 2) + 1;
            }
            void clear() noexcept { m_mask = 0; }
        private:
            static std::size_t round_up_to_power_of_two(std::size_t value) {
                if (is_power_of_two(value)) {
                    return value;
                }
                if (value == 0) {
                    return 1;
                }
                --value;
                for (std::size_t i = 1; i < sizeof(std::size_t) * CHAR_BIT; i *= 2) {
                    value |= value >> i;
                }
                return value + 1;
            }
            static constexpr bool is_power_of_two(std::size_t value) {
                return value != 0 && (value & (value - 1)) == 0;
            }
        private:
            static_assert(is_power_of_two(GrowthFactor) && GrowthFactor >= 2, "GrowthFactor must be a power of two >= 2.");
            std::size_t m_mask;
        };
        template<class GrowthFactor = std::ratio<3, 2>>
        class mod_growth_policy {
        public:
            explicit mod_growth_policy(std::size_t &min_bucket_count_in_out) {
                if (min_bucket_count_in_out > max_bucket_count()) {
                    TSL_HH_THROW_OR_TERMINATE(std::length_error, "The hash table exceeds its maximum size.");
                }
                if (min_bucket_count_in_out > 0) {
                    m_mod = min_bucket_count_in_out;
                } else {
                    m_mod = 1;
                }
            }
            std::size_t bucket_for_hash(std::size_t hash) const noexcept {
                return hash % m_mod;
            }
            std::size_t next_bucket_count() const {
                if (m_mod == max_bucket_count()) {
                    TSL_HH_THROW_OR_TERMINATE(std::length_error, "The hash table exceeds its maximum size.");
                }
                const double next_bucket_count = std::ceil(double(m_mod) * REHASH_SIZE_MULTIPLICATION_FACTOR);
                if (!std::isnormal(next_bucket_count)) {
                    TSL_HH_THROW_OR_TERMINATE(std::length_error, "The hash table exceeds its maximum size.");
                }
                if (next_bucket_count > double(max_bucket_count())) {
                    return max_bucket_count();
                } else {
                    return std::size_t(next_bucket_count);
                }
            }
            std::size_t max_bucket_count() const { return MAX_BUCKET_COUNT; }
            void clear() noexcept { m_mod = 1; }
        private:
            static constexpr double REHASH_SIZE_MULTIPLICATION_FACTOR = 1.0 * GrowthFactor::num / GrowthFactor::den;
            static const std::size_t MAX_BUCKET_COUNT = std::size_t(double(std::numeric_limits<std::size_t>::max() / REHASH_SIZE_MULTIPLICATION_FACTOR));
            static_assert(REHASH_SIZE_MULTIPLICATION_FACTOR >= 1.1, "Growth factor should be >= 1.1.");
            std::size_t m_mod;
        };
        namespace detail {
#if SIZE_MAX >= ULLONG_MAX
#define TSL_HH_NB_PRIMES 51
#elif SIZE_MAX >= ULONG_MAX
#define TSL_HH_NB_PRIMES 40
#else
#define TSL_HH_NB_PRIMES 23
#endif
            static constexpr const std::array<std::size_t, TSL_HH_NB_PRIMES> PRIMES = {{1u, 5u, 17u, 29u, 37u, 53u, 67u, 79u, 97u, 131u, 193u, 257u, 389u, 521u, 769u, 1031u, 1543u, 2053u, 3079u, 6151u, 12289u, 24593u, 49157u,
#if SIZE_MAX >= ULONG_MAX
                                                                                        98317ul, 196613ul, 393241ul, 786433ul, 1572869ul, 3145739ul, 6291469ul, 12582917ul, 25165843ul, 50331653ul, 100663319ul, 201326611ul, 402653189ul, 805306457ul, 1610612741ul, 3221225473ul, 4294967291ul,
#endif
#if SIZE_MAX >= ULLONG_MAX
                                                                                        6442450939ull, 12884901893ull, 25769803751ull, 51539607551ull, 103079215111ull, 206158430209ull, 412316860441ull, 824633720831ull, 1649267441651ull, 3298534883309ull, 6597069766657ull,
#endif
                                                                                       }};
            template<unsigned int IPrime>
            static constexpr std::size_t mod(std::size_t hash) {
                return hash % PRIMES[IPrime];
            }
            static constexpr const std::array<std::size_t (*)(std::size_t), TSL_HH_NB_PRIMES> MOD_PRIME = {
                    {&mod<0>, &mod<1>, &mod<2>, &mod<3>, &mod<4>, &mod<5>, &mod<6>, &mod<7>, &mod<8>, &mod<9>, &mod<10>, &mod<11>, &mod<12>, &mod<13>, &mod<14>, &mod<15>, &mod<16>, &mod<17>, &mod<18>, &mod<19>, &mod<20>, &mod<21>, &mod<22>,
#if SIZE_MAX >= ULONG_MAX
                     &mod<23>, &mod<24>, &mod<25>, &mod<26>, &mod<27>, &mod<28>, &mod<29>, &mod<30>, &mod<31>, &mod<32>, &mod<33>, &mod<34>, &mod<35>, &mod<36>, &mod<37>, &mod<38>, &mod<39>,
#endif
#if SIZE_MAX >= ULLONG_MAX
                     &mod<40>, &mod<41>, &mod<42>, &mod<43>, &mod<44>, &mod<45>, &mod<46>, &mod<47>, &mod<48>, &mod<49>, &mod<50>,
#endif
                    }};
        }  // namespace detail
        class prime_growth_policy {
        public:
            explicit prime_growth_policy(std::size_t &min_bucket_count_in_out) {
                auto it_prime = std::lower_bound(detail::PRIMES.begin(), detail::PRIMES.end(), min_bucket_count_in_out);
                if (it_prime == detail::PRIMES.end()) {
                    TSL_HH_THROW_OR_TERMINATE(std::length_error, "The hash table exceeds its maximum size.");
                }
                m_iprime = static_cast<unsigned int>(
                        std::distance(detail::PRIMES.begin(), it_prime));
                if (min_bucket_count_in_out > 0) {
                    min_bucket_count_in_out = *it_prime;
                } else {
                    min_bucket_count_in_out = 0;
                }
            }
            std::size_t bucket_for_hash(std::size_t hash) const noexcept {
                return detail::MOD_PRIME[m_iprime](hash);
            }
            std::size_t next_bucket_count() const {
                if (m_iprime + 1 >= detail::PRIMES.size()) {
                    TSL_HH_THROW_OR_TERMINATE(std::length_error, "The hash table exceeds its maximum size.");
                }
                return detail::PRIMES[m_iprime + 1];
            }
            std::size_t max_bucket_count() const { return detail::PRIMES.back(); }
            void clear() noexcept { m_iprime = 0; }
        private:
            unsigned int m_iprime;
            static_assert(std::numeric_limits<decltype(m_iprime)>::max() >= detail::PRIMES.size(), "The type of m_iprime is not big enough.");
        };
    }  // namespace hh
}  // namespace tsl
#endif
#if (defined(__GNUC__) && (__GNUC__ == 4) && (__GNUC_MINOR__ < 9))
#define TSL_HH_NO_RANGE_ERASE_WITH_CONST_ITERATOR
#endif
namespace tsl {
    namespace detail_hopscotch_hash {
        template<typename T>
        struct make_void {
            using type = void;
        };
        template<typename T, typename = void>
        struct has_is_transparent : std::false_type {
        };
        template<typename T>
        struct has_is_transparent<T, typename make_void<typename T::is_transparent>::type> : std::true_type {
        };
        template<typename T, typename = void>
        struct has_key_compare : std::false_type {
        };
        template<typename T>
        struct has_key_compare<T, typename make_void<typename T::key_compare>::type> : std::true_type {
        };
        template<typename U>
        struct is_power_of_two_policy : std::false_type {
        };
        template<std::size_t GrowthFactor>
        struct is_power_of_two_policy<tsl::hh::power_of_two_growth_policy<GrowthFactor>> : std::true_type {
        };
        template<typename T, typename U>
        static T numeric_cast(U value, const char *error_message = "numeric_cast() failed.") {
            T ret = static_cast<T>(value);
            if (static_cast<U>(ret) != value) {
                TSL_HH_THROW_OR_TERMINATE(std::runtime_error, error_message);
            }
            const bool is_same_signedness = (std::is_unsigned<T>::value && std::is_unsigned<U>::value) || (std::is_signed<T>::value && std::is_signed<U>::value);
            if (!is_same_signedness && (ret < T{}) != (value < U{})) {
                TSL_HH_THROW_OR_TERMINATE(std::runtime_error, error_message);
            }
            return ret;
        }
        static const std::size_t SMALLEST_TYPE_MAX_BITS_SUPPORTED = 64;
        template<unsigned int MinBits, typename Enable = void>
        class smallest_type_for_min_bits {
        };
        template<unsigned int MinBits>
        class smallest_type_for_min_bits<MinBits, typename std::enable_if<(MinBits > 0) && (MinBits <= 8)>::type> {
        public:
            using type = std::uint_least8_t;
        };
        template<unsigned int MinBits>
        class smallest_type_for_min_bits<MinBits, typename std::enable_if<(MinBits > 8) && (MinBits <= 16)>::type> {
        public:
            using type = std::uint_least16_t;
        };
        template<unsigned int MinBits>
        class smallest_type_for_min_bits<MinBits, typename std::enable_if<(MinBits > 16) && (MinBits <= 32)>::type> {
        public:
            using type = std::uint_least32_t;
        };
        template<unsigned int MinBits>
        class smallest_type_for_min_bits<MinBits, typename std::enable_if<(MinBits > 32) && (MinBits <= 64)>::type> {
        public:
            using type = std::uint_least64_t;
        };
        static const std::size_t NB_RESERVED_BITS_IN_NEIGHBORHOOD = 2;
        using truncated_hash_type = std::uint_least32_t;
        template<bool StoreHash>
        class hopscotch_bucket_hash {
        public:
            bool bucket_hash_equal(std::size_t /*hash*/) const noexcept { return true; }
            truncated_hash_type truncated_bucket_hash() const noexcept { return 0; }
        protected:
            void copy_hash(const hopscotch_bucket_hash &) noexcept {}
            void set_hash(truncated_hash_type /*hash*/) noexcept {}
        };
        template<>
        class hopscotch_bucket_hash<true> {
        public:
            bool bucket_hash_equal(std::size_t hash) const noexcept {
                return m_hash == truncated_hash_type(hash);
            }
            truncated_hash_type truncated_bucket_hash() const noexcept { return m_hash; }
        protected:
            void copy_hash(const hopscotch_bucket_hash &bucket) noexcept {
                m_hash = bucket.m_hash;
            }
            void set_hash(truncated_hash_type hash) noexcept { m_hash = hash; }
        private:
            truncated_hash_type m_hash;
        };
        template<typename ValueType, unsigned int NeighborhoodSize, bool StoreHash>
        class hopscotch_bucket : public hopscotch_bucket_hash<StoreHash> {
        private:
            static const std::size_t MIN_NEIGHBORHOOD_SIZE = 4;
            static const std::size_t MAX_NEIGHBORHOOD_SIZE = SMALLEST_TYPE_MAX_BITS_SUPPORTED - NB_RESERVED_BITS_IN_NEIGHBORHOOD;
            static_assert(NeighborhoodSize >= 4, "NeighborhoodSize should be >= 4.");
            static_assert(MIN_NEIGHBORHOOD_SIZE == 4, "");
            static_assert(NeighborhoodSize <= 62, "NeighborhoodSize should be <= 62.");
            static_assert(MAX_NEIGHBORHOOD_SIZE == 62, "");
            static_assert(!StoreHash || NeighborhoodSize <= 30, "NeighborhoodSize should be <= 30 if StoreHash is true.");
            static_assert(MAX_NEIGHBORHOOD_SIZE - 32 == 30, "");
            using bucket_hash = hopscotch_bucket_hash<StoreHash>;
        public:
            using value_type = ValueType;
            using neighborhood_bitmap = typename smallest_type_for_min_bits<NeighborhoodSize + NB_RESERVED_BITS_IN_NEIGHBORHOOD>::type;
            hopscotch_bucket() noexcept: bucket_hash(), m_neighborhood_infos(0) {
                tsl_hh_assert(empty());
            }
            hopscotch_bucket(const hopscotch_bucket &bucket) noexcept(std::is_nothrow_copy_constructible<value_type>::value): bucket_hash(bucket), m_neighborhood_infos(0) {
                if (!bucket.empty()) {
                    ::new(static_cast<void *>(std::addressof(m_value)))
                            value_type(bucket.value());
                }
                m_neighborhood_infos = bucket.m_neighborhood_infos;
            }
            hopscotch_bucket(hopscotch_bucket &&bucket) noexcept(std::is_nothrow_move_constructible<value_type>::value): bucket_hash(std::move(bucket)), m_neighborhood_infos(0) {
                if (!bucket.empty()) {
                    ::new(static_cast<void *>(std::addressof(m_value)))
                            value_type(std::move(bucket.value()));
                }
                m_neighborhood_infos = bucket.m_neighborhood_infos;
            }
            hopscotch_bucket &operator=(const hopscotch_bucket &bucket) noexcept(std::is_nothrow_copy_constructible<value_type>::value) {
                if (this != &bucket) {
                    remove_value();
                    bucket_hash::operator=(bucket);
                    if (!bucket.empty()) {
                        ::new(static_cast<void *>(std::addressof(m_value)))
                                value_type(bucket.value());
                    }
                    m_neighborhood_infos = bucket.m_neighborhood_infos;
                }
                return *this;
            }
            hopscotch_bucket &operator=(hopscotch_bucket &&) = delete;
            ~hopscotch_bucket() noexcept {
                if (!empty()) {
                    destroy_value();
                }
            }
            neighborhood_bitmap neighborhood_infos() const noexcept {
                return neighborhood_bitmap(m_neighborhood_infos >> NB_RESERVED_BITS_IN_NEIGHBORHOOD);
            }
            void set_overflow(bool has_overflow) noexcept {
                if (has_overflow) {
                    m_neighborhood_infos = neighborhood_bitmap(m_neighborhood_infos | 2);
                } else {
                    m_neighborhood_infos = neighborhood_bitmap(m_neighborhood_infos & ~2);
                }
            }
            bool has_overflow() const noexcept { return (m_neighborhood_infos & 2) != 0; }
            bool empty() const noexcept { return (m_neighborhood_infos & 1) == 0; }
            void toggle_neighbor_presence(std::size_t ineighbor) noexcept {
                tsl_hh_assert(ineighbor <= NeighborhoodSize);
                m_neighborhood_infos = neighborhood_bitmap(m_neighborhood_infos ^ (1ull << (ineighbor + NB_RESERVED_BITS_IN_NEIGHBORHOOD)));
            }
            bool check_neighbor_presence(std::size_t ineighbor) const noexcept {
                tsl_hh_assert(ineighbor <= NeighborhoodSize);
                if (((m_neighborhood_infos >> (ineighbor + NB_RESERVED_BITS_IN_NEIGHBORHOOD)) & 1) == 1) {
                    return true;
                }
                return false;
            }
            value_type &value() noexcept {
                tsl_hh_assert(!empty());
#if defined(__cplusplus) && __cplusplus >= 201703L
                return *std::launder(reinterpret_cast<value_type *>(std::addressof(m_value)));
#else
                return *reinterpret_cast<value_type*>(std::addressof(m_value));
#endif
            }
            const value_type &value() const noexcept {
                tsl_hh_assert(!empty());
#if defined(__cplusplus) && __cplusplus >= 201703L
                return *std::launder(reinterpret_cast<const value_type *>(std::addressof(m_value)));
#else
                return *reinterpret_cast<const value_type*>(std::addressof(m_value));
#endif
            }
            template<typename... Args>
            void set_value_of_empty_bucket(truncated_hash_type hash, Args &&... value_type_args) {
                tsl_hh_assert(empty());
                ::new(static_cast<void *>(std::addressof(m_value)))
                        value_type(std::forward<Args>(value_type_args)...);
                set_empty(false);
                this->set_hash(hash);
            }
            void swap_value_into_empty_bucket(hopscotch_bucket &empty_bucket) {
                tsl_hh_assert(empty_bucket.empty());
                if (!empty()) {
                    ::new(static_cast<void *>(std::addressof(empty_bucket.m_value)))
                            value_type(std::move(value()));
                    empty_bucket.copy_hash(*this);
                    empty_bucket.set_empty(false);
                    destroy_value();
                    set_empty(true);
                }
            }
            void remove_value() noexcept {
                if (!empty()) {
                    destroy_value();
                    set_empty(true);
                }
            }
            void clear() noexcept {
                if (!empty()) {
                    destroy_value();
                }
                m_neighborhood_infos = 0;
                tsl_hh_assert(empty());
            }
            static truncated_hash_type truncate_hash(std::size_t hash) noexcept {
                return truncated_hash_type(hash);
            }
        private:
            void set_empty(bool is_empty) noexcept {
                if (is_empty) {
                    m_neighborhood_infos = neighborhood_bitmap(m_neighborhood_infos & ~1);
                } else {
                    m_neighborhood_infos = neighborhood_bitmap(m_neighborhood_infos | 1);
                }
            }
            void destroy_value() noexcept {
                tsl_hh_assert(!empty());
                value().~value_type();
            }
        private:
            neighborhood_bitmap m_neighborhood_infos;
            alignas(value_type) unsigned char m_value[sizeof(value_type)];
        };
        template<class ValueType, class KeySelect, class ValueSelect, class Hash, class KeyEqual, class Allocator, unsigned int NeighborhoodSize, bool StoreHash, class GrowthPolicy, class OverflowContainer>
        class hopscotch_hash : private Hash, private KeyEqual, private GrowthPolicy {
        private:
            template<typename U> using has_mapped_type = typename std::integral_constant<bool, !std::is_same<U, void>::value>;
            static_assert(noexcept(std::declval<GrowthPolicy>().bucket_for_hash(std::size_t(0))), "GrowthPolicy::bucket_for_hash must be noexcept.");
            static_assert(noexcept(std::declval<GrowthPolicy>().clear()), "GrowthPolicy::clear must be noexcept.");
        public:
            template<bool IsConst>
            class hopscotch_iterator;
            using key_type = typename KeySelect::key_type;
            using value_type = ValueType;
            using size_type = std::size_t;
            using difference_type = std::ptrdiff_t;
            using hasher = Hash;
            using key_equal = KeyEqual;
            using allocator_type = Allocator;
            using reference = value_type &;
            using const_reference = const value_type &;
            using pointer = value_type *;
            using const_pointer = const value_type *;
            using iterator = hopscotch_iterator<false>;
            using const_iterator = hopscotch_iterator<true>;
        private:
            using hopscotch_bucket = tsl::detail_hopscotch_hash::hopscotch_bucket<ValueType, NeighborhoodSize, StoreHash>;
            using neighborhood_bitmap = typename hopscotch_bucket::neighborhood_bitmap;
            using buckets_allocator = typename std::allocator_traits<allocator_type>::template rebind_alloc<hopscotch_bucket>;
            using buckets_container_type = std::vector<hopscotch_bucket, buckets_allocator>;
            using overflow_container_type = OverflowContainer;
            static_assert(std::is_same<typename overflow_container_type::value_type, ValueType>::value, "OverflowContainer should have ValueType as type.");
            static_assert(std::is_same<typename overflow_container_type::allocator_type, Allocator>::value, "Invalid allocator, not the same type as the value_type.");
            using iterator_buckets = typename buckets_container_type::iterator;
            using const_iterator_buckets = typename buckets_container_type::const_iterator;
            using iterator_overflow = typename overflow_container_type::iterator;
            using const_iterator_overflow = typename overflow_container_type::const_iterator;
        public:
            template<bool IsConst>
            class hopscotch_iterator {
                friend class hopscotch_hash;
            private:
                using iterator_bucket = typename std::conditional<IsConst, typename hopscotch_hash::const_iterator_buckets, typename hopscotch_hash::iterator_buckets>::type;
                using iterator_overflow = typename std::conditional<IsConst, typename hopscotch_hash::const_iterator_overflow, typename hopscotch_hash::iterator_overflow>::type;
                hopscotch_iterator(iterator_bucket buckets_iterator, iterator_bucket buckets_end_iterator, iterator_overflow overflow_iterator) noexcept: m_buckets_iterator(buckets_iterator), m_buckets_end_iterator(buckets_end_iterator), m_overflow_iterator(overflow_iterator) {}
            public:
                using iterator_category = std::forward_iterator_tag;
                using value_type = const typename hopscotch_hash::value_type;
                using difference_type = std::ptrdiff_t;
                using reference = value_type &;
                using pointer = value_type *;
                hopscotch_iterator() noexcept {}
                template<bool TIsConst = IsConst, typename std::enable_if<TIsConst>::type * = nullptr>
                hopscotch_iterator(const hopscotch_iterator<!TIsConst> &other) noexcept
                        : m_buckets_iterator(other.m_buckets_iterator), m_buckets_end_iterator(other.m_buckets_end_iterator), m_overflow_iterator(other.m_overflow_iterator) {}
                hopscotch_iterator(const hopscotch_iterator &other) = default;
                hopscotch_iterator(hopscotch_iterator &&other) = default;
                hopscotch_iterator &operator=(const hopscotch_iterator &other) = default;
                hopscotch_iterator &operator=(hopscotch_iterator &&other) = default;
                const typename hopscotch_hash::key_type &key() const {
                    if (m_buckets_iterator != m_buckets_end_iterator) {
                        return KeySelect()(m_buckets_iterator->value());
                    }
                    return KeySelect()(*m_overflow_iterator);
                }
                template<class U = ValueSelect, typename std::enable_if<has_mapped_type<U>::value>::type * = nullptr>
                typename std::conditional<IsConst, const typename U::value_type &, typename U::value_type &>::type value() const {
                    if (m_buckets_iterator != m_buckets_end_iterator) {
                        return U()(m_buckets_iterator->value());
                    }
                    return U()(*m_overflow_iterator);
                }
                reference operator*() const {
                    if (m_buckets_iterator != m_buckets_end_iterator) {
                        return m_buckets_iterator->value();
                    }
                    return *m_overflow_iterator;
                }
                pointer operator->() const {
                    if (m_buckets_iterator != m_buckets_end_iterator) {
                        return std::addressof(m_buckets_iterator->value());
                    }
                    return std::addressof(*m_overflow_iterator);
                }
                hopscotch_iterator &operator++() {
                    if (m_buckets_iterator == m_buckets_end_iterator) {
                        ++m_overflow_iterator;
                        return *this;
                    }
                    do {
                        ++m_buckets_iterator;
                    } while (m_buckets_iterator != m_buckets_end_iterator && m_buckets_iterator->empty());
                    return *this;
                }
                hopscotch_iterator operator++(int) {
                    hopscotch_iterator tmp(*this);
                    ++*this;
                    return tmp;
                }
                friend bool operator==(const hopscotch_iterator &lhs, const hopscotch_iterator &rhs) {
                    return lhs.m_buckets_iterator == rhs.m_buckets_iterator && lhs.m_overflow_iterator == rhs.m_overflow_iterator;
                }
                friend bool operator!=(const hopscotch_iterator &lhs, const hopscotch_iterator &rhs) {
                    return !(lhs == rhs);
                }
            private:
                iterator_bucket m_buckets_iterator;
                iterator_bucket m_buckets_end_iterator;
                iterator_overflow m_overflow_iterator;
            };
        public:
            template<class OC = OverflowContainer, typename std::enable_if<!has_key_compare<OC>::value>::type * = nullptr>
            hopscotch_hash(size_type bucket_count, const Hash &hash, const KeyEqual &equal, const Allocator &alloc, float max_load_factor)
                    : Hash(hash), KeyEqual(equal), GrowthPolicy(bucket_count), m_buckets_data(alloc), m_overflow_elements(alloc), m_buckets(static_empty_bucket_ptr()), m_nb_elements(0) {
                if (bucket_count > max_bucket_count()) {
                    TSL_HH_THROW_OR_TERMINATE(std::length_error, "The map exceeds its maximum size.");
                }
                if (bucket_count > 0) {
                    static_assert(NeighborhoodSize - 1 > 0, "");
                    m_buckets_data.resize(bucket_count + NeighborhoodSize - 1);
                    m_buckets = m_buckets_data.data();
                }
                this->max_load_factor(max_load_factor);
                static_assert(std::is_nothrow_move_constructible<value_type>::value || std::is_copy_constructible<value_type>::value, "value_type must be either copy constructible or nothrow "
                                                                                                                                      "move constructible.");
            }
            template<class OC = OverflowContainer, typename std::enable_if<has_key_compare<OC>::value>::type * = nullptr>
            hopscotch_hash(size_type bucket_count, const Hash &hash, const KeyEqual &equal, const Allocator &alloc, float max_load_factor, const typename OC::key_compare &comp)
                    : Hash(hash), KeyEqual(equal), GrowthPolicy(bucket_count), m_buckets_data(alloc), m_overflow_elements(comp, alloc), m_buckets(static_empty_bucket_ptr()), m_nb_elements(0) {
                if (bucket_count > max_bucket_count()) {
                    TSL_HH_THROW_OR_TERMINATE(std::length_error, "The map exceeds its maximum size.");
                }
                if (bucket_count > 0) {
                    static_assert(NeighborhoodSize - 1 > 0, "");
                    m_buckets_data.resize(bucket_count + NeighborhoodSize - 1);
                    m_buckets = m_buckets_data.data();
                }
                this->max_load_factor(max_load_factor);
                static_assert(std::is_nothrow_move_constructible<value_type>::value || std::is_copy_constructible<value_type>::value, "value_type must be either copy constructible or nothrow "
                                                                                                                                      "move constructible.");
            }
            hopscotch_hash(const hopscotch_hash &other) : hopscotch_hash(other, other.get_allocator()) {}
            hopscotch_hash(const hopscotch_hash &other, const Allocator &alloc) : Hash(other), KeyEqual(other), GrowthPolicy(other), m_buckets_data(other.m_buckets_data, alloc), m_overflow_elements(other.m_overflow_elements),
                                                                                  m_buckets(m_buckets_data.empty() ? static_empty_bucket_ptr() : m_buckets_data.data()), m_nb_elements(other.m_nb_elements), m_min_load_threshold_rehash(other.m_min_load_threshold_rehash),
                                                                                  m_max_load_threshold_rehash(other.m_max_load_threshold_rehash), m_max_load_factor(other.m_max_load_factor) {}
            hopscotch_hash(hopscotch_hash &&other) noexcept(std::is_nothrow_move_constructible<Hash>::value && std::is_nothrow_move_constructible<KeyEqual>::value && std::is_nothrow_move_constructible<GrowthPolicy>::value && std::is_nothrow_move_constructible<buckets_container_type>::value &&
                                                            std::is_nothrow_move_constructible<overflow_container_type>::value): Hash(std::move(static_cast<Hash &>(other))), KeyEqual(std::move(static_cast<KeyEqual &>(other))), GrowthPolicy(std::move(static_cast<GrowthPolicy &>(other))),
                                                                                                                                 m_buckets_data(std::move(other.m_buckets_data)), m_overflow_elements(std::move(other.m_overflow_elements)),
                                                                                                                                 m_buckets(m_buckets_data.empty() ? static_empty_bucket_ptr() : m_buckets_data.data()), m_nb_elements(other.m_nb_elements),
                                                                                                                                 m_min_load_threshold_rehash(other.m_min_load_threshold_rehash), m_max_load_threshold_rehash(other.m_max_load_threshold_rehash),
                                                                                                                                 m_max_load_factor(other.m_max_load_factor) {
                other.GrowthPolicy::clear();
                other.m_buckets_data.clear();
                other.m_overflow_elements.clear();
                other.m_buckets = static_empty_bucket_ptr();
                other.m_nb_elements = 0;
                other.m_min_load_threshold_rehash = 0;
                other.m_max_load_threshold_rehash = 0;
            }
            hopscotch_hash &operator=(const hopscotch_hash &other) {
                if (&other != this) {
                    Hash::operator=(other);
                    KeyEqual::operator=(other);
                    GrowthPolicy::operator=(other);
                    m_buckets_data = other.m_buckets_data;
                    m_overflow_elements = other.m_overflow_elements;
                    m_buckets = m_buckets_data.empty() ? static_empty_bucket_ptr() : m_buckets_data.data();
                    m_nb_elements = other.m_nb_elements;
                    m_min_load_threshold_rehash = other.m_min_load_threshold_rehash;
                    m_max_load_threshold_rehash = other.m_max_load_threshold_rehash;
                    m_max_load_factor = other.m_max_load_factor;
                }
                return *this;
            }
            hopscotch_hash &operator=(hopscotch_hash &&other) {
                other.swap(*this);
                other.clear();
                return *this;
            }
            allocator_type get_allocator() const {
                return m_buckets_data.get_allocator();
            }
            iterator begin() noexcept {
                auto begin = m_buckets_data.begin();
                while (begin != m_buckets_data.end() && begin->empty()) {
                    ++begin;
                }
                return iterator(begin, m_buckets_data.end(), m_overflow_elements.begin());
            }
            const_iterator begin() const noexcept { return cbegin(); }
            const_iterator cbegin() const noexcept {
                auto begin = m_buckets_data.cbegin();
                while (begin != m_buckets_data.cend() && begin->empty()) {
                    ++begin;
                }
                return const_iterator(begin, m_buckets_data.cend(), m_overflow_elements.cbegin());
            }
            iterator end() noexcept {
                return iterator(m_buckets_data.end(), m_buckets_data.end(), m_overflow_elements.end());
            }
            const_iterator end() const noexcept { return cend(); }
            const_iterator cend() const noexcept {
                return const_iterator(m_buckets_data.cend(), m_buckets_data.cend(), m_overflow_elements.cend());
            }
            bool empty() const noexcept { return m_nb_elements == 0; }
            size_type size() const noexcept { return m_nb_elements; }
            size_type max_size() const noexcept { return m_buckets_data.max_size(); }
            void clear() noexcept {
                for (auto &bucket: m_buckets_data) {
                    bucket.clear();
                }
                m_overflow_elements.clear();
                m_nb_elements = 0;
            }
            std::pair<iterator, bool> insert(const value_type &value) {
                return insert_impl(value);
            }
            template<class P, typename std::enable_if<std::is_constructible<value_type, P &&>::value>::type * = nullptr>
            std::pair<iterator, bool> insert(P &&value) {
                return insert_impl(value_type(std::forward<P>(value)));
            }
            std::pair<iterator, bool> insert(value_type &&value) {
                return insert_impl(std::move(value));
            }
            iterator insert(const_iterator hint, const value_type &value) {
                if (hint != cend() && compare_keys(KeySelect()(*hint), KeySelect()(value))) {
                    return mutable_iterator(hint);
                }
                return insert(value).first;
            }
            template<class P, typename std::enable_if<std::is_constructible<value_type, P &&>::value>::type * = nullptr>
            iterator insert(const_iterator hint, P &&value) {
                return emplace_hint(hint, std::forward<P>(value));
            }
            iterator insert(const_iterator hint, value_type &&value) {
                if (hint != cend() && compare_keys(KeySelect()(*hint), KeySelect()(value))) {
                    return mutable_iterator(hint);
                }
                return insert(std::move(value)).first;
            }
            template<class InputIt>
            void insert(InputIt first, InputIt last) {
                if (std::is_base_of<std::forward_iterator_tag, typename std::iterator_traits<InputIt>::iterator_category>::value) {
                    const auto nb_elements_insert = std::distance(first, last);
                    const std::size_t nb_elements_in_buckets = m_nb_elements - m_overflow_elements.size();
                    const std::size_t nb_free_buckets = m_max_load_threshold_rehash - nb_elements_in_buckets;
                    tsl_hh_assert(m_nb_elements >= m_overflow_elements.size());
                    tsl_hh_assert(m_max_load_threshold_rehash >= nb_elements_in_buckets);
                    if (nb_elements_insert > 0 && nb_free_buckets < std::size_t(nb_elements_insert)) {
                        reserve(nb_elements_in_buckets + std::size_t(nb_elements_insert));
                    }
                }
                for (; first != last; ++first) {
                    insert(*first);
                }
            }
            template<class M>
            std::pair<iterator, bool> insert_or_assign(const key_type &k, M &&obj) {
                return insert_or_assign_impl(k, std::forward<M>(obj));
            }
            template<class M>
            std::pair<iterator, bool> insert_or_assign(key_type &&k, M &&obj) {
                return insert_or_assign_impl(std::move(k), std::forward<M>(obj));
            }
            template<class M>
            iterator insert_or_assign(const_iterator hint, const key_type &k, M &&obj) {
                if (hint != cend() && compare_keys(KeySelect()(*hint), k)) {
                    auto it = mutable_iterator(hint);
                    it.value() = std::forward<M>(obj);
                    return it;
                }
                return insert_or_assign(k, std::forward<M>(obj)).first;
            }
            template<class M>
            iterator insert_or_assign(const_iterator hint, key_type &&k, M &&obj) {
                if (hint != cend() && compare_keys(KeySelect()(*hint), k)) {
                    auto it = mutable_iterator(hint);
                    it.value() = std::forward<M>(obj);
                    return it;
                }
                return insert_or_assign(std::move(k), std::forward<M>(obj)).first;
            }
            template<class... Args>
            std::pair<iterator, bool> emplace(Args &&... args) {
                return insert(value_type(std::forward<Args>(args)...));
            }
            template<class... Args>
            iterator emplace_hint(const_iterator hint, Args &&... args) {
                return insert(hint, value_type(std::forward<Args>(args)...));
            }
            template<class... Args>
            std::pair<iterator, bool> try_emplace(const key_type &k, Args &&... args) {
                return try_emplace_impl(k, std::forward<Args>(args)...);
            }
            template<class... Args>
            std::pair<iterator, bool> try_emplace(key_type &&k, Args &&... args) {
                return try_emplace_impl(std::move(k), std::forward<Args>(args)...);
            }
            template<class... Args>
            iterator try_emplace(const_iterator hint, const key_type &k, Args &&... args) {
                if (hint != cend() && compare_keys(KeySelect()(*hint), k)) {
                    return mutable_iterator(hint);
                }
                return try_emplace(k, std::forward<Args>(args)...).first;
            }
            template<class... Args>
            iterator try_emplace(const_iterator hint, key_type &&k, Args &&... args) {
                if (hint != cend() && compare_keys(KeySelect()(*hint), k)) {
                    return mutable_iterator(hint);
                }
                return try_emplace(std::move(k), std::forward<Args>(args)...).first;
            }
            iterator erase(iterator pos) { return erase(const_iterator(pos)); }
            iterator erase(const_iterator pos) {
                const std::size_t ibucket_for_hash = bucket_for_hash(hash_key(pos.key()));
                if (pos.m_buckets_iterator != pos.m_buckets_end_iterator) {
                    auto it_bucket = m_buckets_data.begin() + std::distance(m_buckets_data.cbegin(), pos.m_buckets_iterator);
                    erase_from_bucket(*it_bucket, ibucket_for_hash);
                    return ++iterator(it_bucket, m_buckets_data.end(), m_overflow_elements.begin());
                } else {
                    auto it_next_overflow = erase_from_overflow(pos.m_overflow_iterator, ibucket_for_hash);
                    return iterator(m_buckets_data.end(), m_buckets_data.end(), it_next_overflow);
                }
            }
            iterator erase(const_iterator first, const_iterator last) {
                if (first == last) {
                    return mutable_iterator(first);
                }
                auto to_delete = erase(first);
                while (to_delete != last) {
                    to_delete = erase(to_delete);
                }
                return to_delete;
            }
            template<class K>
            size_type erase(const K &key) {
                return erase(key, hash_key(key));
            }
            template<class K>
            size_type erase(const K &key, std::size_t hash) {
                const std::size_t ibucket_for_hash = bucket_for_hash(hash);
                hopscotch_bucket *bucket_found = find_in_buckets(key, hash, m_buckets + ibucket_for_hash);
                if (bucket_found != nullptr) {
                    erase_from_bucket(*bucket_found, ibucket_for_hash);
                    return 1;
                }
                if (m_buckets[ibucket_for_hash].has_overflow()) {
                    auto it_overflow = find_in_overflow(key);
                    if (it_overflow != m_overflow_elements.end()) {
                        erase_from_overflow(it_overflow, ibucket_for_hash);
                        return 1;
                    }
                }
                return 0;
            }
            void swap(hopscotch_hash &other) {
                using std::swap;
                swap(static_cast<Hash &>(*this), static_cast<Hash &>(other));
                swap(static_cast<KeyEqual &>(*this), static_cast<KeyEqual &>(other));
                swap(static_cast<GrowthPolicy &>(*this), static_cast<GrowthPolicy &>(other));
                swap(m_buckets_data, other.m_buckets_data);
                swap(m_overflow_elements, other.m_overflow_elements);
                swap(m_buckets, other.m_buckets);
                swap(m_nb_elements, other.m_nb_elements);
                swap(m_min_load_threshold_rehash, other.m_min_load_threshold_rehash);
                swap(m_max_load_threshold_rehash, other.m_max_load_threshold_rehash);
                swap(m_max_load_factor, other.m_max_load_factor);
            }
            template<class K, class U = ValueSelect, typename std::enable_if<has_mapped_type<U>::value>::type * = nullptr>
            typename U::value_type &at(const K &key) {
                return at(key, hash_key(key));
            }
            template<class K, class U = ValueSelect, typename std::enable_if<has_mapped_type<U>::value>::type * = nullptr>
            typename U::value_type &at(const K &key, std::size_t hash) {
                return const_cast<typename U::value_type &>(
                        static_cast<const hopscotch_hash *>(this)->at(key, hash));
            }
            template<class K, class U = ValueSelect, typename std::enable_if<has_mapped_type<U>::value>::type * = nullptr>
            const typename U::value_type &at(const K &key) const {
                return at(key, hash_key(key));
            }
            template<class K, class U = ValueSelect, typename std::enable_if<has_mapped_type<U>::value>::type * = nullptr>
            const typename U::value_type &at(const K &key, std::size_t hash) const {
                using T = typename U::value_type;
                const T *value = find_value_impl(key, hash, m_buckets + bucket_for_hash(hash));
                if (value == nullptr) {
                    TSL_HH_THROW_OR_TERMINATE(std::out_of_range, "Couldn't find key.");
                } else {
                    return *value;
                }
            }
            template<class K, class U = ValueSelect, typename std::enable_if<has_mapped_type<U>::value>::type * = nullptr>
            typename U::value_type &operator[](K &&key) {
                using T = typename U::value_type;
                const std::size_t hash = hash_key(key);
                const std::size_t ibucket_for_hash = bucket_for_hash(hash);
                T *value = find_value_impl(key, hash, m_buckets + ibucket_for_hash);
                if (value != nullptr) {
                    return *value;
                } else {
                    return insert_value(ibucket_for_hash, hash, std::piecewise_construct, std::forward_as_tuple(std::forward<K>(key)), std::forward_as_tuple()).first.value();
                }
            }
            template<class K>
            size_type count(const K &key) const {
                return count(key, hash_key(key));
            }
            template<class K>
            size_type count(const K &key, std::size_t hash) const {
                return count_impl(key, hash, m_buckets + bucket_for_hash(hash));
            }
            template<class K>
            iterator find(const K &key) {
                return find(key, hash_key(key));
            }
            template<class K>
            iterator find(const K &key, std::size_t hash) {
                return find_impl(key, hash, m_buckets + bucket_for_hash(hash));
            }
            template<class K>
            const_iterator find(const K &key) const {
                return find(key, hash_key(key));
            }
            template<class K>
            const_iterator find(const K &key, std::size_t hash) const {
                return find_impl(key, hash, m_buckets + bucket_for_hash(hash));
            }
            template<class K>
            bool contains(const K &key) const {
                return contains(key, hash_key(key));
            }
            template<class K>
            bool contains(const K &key, std::size_t hash) const {
                return count(key, hash) != 0;
            }
            template<class K>
            std::pair<iterator, iterator> equal_range(const K &key) {
                return equal_range(key, hash_key(key));
            }
            template<class K>
            std::pair<iterator, iterator> equal_range(const K &key, std::size_t hash) {
                iterator it = find(key, hash);
                return std::make_pair(it, (it == end()) ? it : std::next(it));
            }
            template<class K>
            std::pair<const_iterator, const_iterator> equal_range(const K &key) const {
                return equal_range(key, hash_key(key));
            }
            template<class K>
            std::pair<const_iterator, const_iterator> equal_range(const K &key, std::size_t hash) const {
                const_iterator it = find(key, hash);
                return std::make_pair(it, (it == cend()) ? it : std::next(it));
            }
            size_type bucket_count() const {
                if (m_buckets_data.empty()) {
                    return 0;
                }
                return m_buckets_data.size() - NeighborhoodSize + 1;
            }
            size_type max_bucket_count() const {
                const std::size_t max_bucket_count = std::min(GrowthPolicy::max_bucket_count(), m_buckets_data.max_size());
                return max_bucket_count - NeighborhoodSize + 1;
            }
            float load_factor() const {
                if (bucket_count() == 0) {
                    return 0;
                }
                return float(m_nb_elements) / float(bucket_count());
            }
            float max_load_factor() const { return m_max_load_factor; }
            void max_load_factor(float ml) {
                m_max_load_factor = std::max(0.1f, std::min(ml, 0.95f));
                m_min_load_threshold_rehash = size_type(float(bucket_count()) * MIN_LOAD_FACTOR_FOR_REHASH);
                m_max_load_threshold_rehash = size_type(float(bucket_count()) * m_max_load_factor);
            }
            void rehash(size_type count_) {
                count_ = std::max(count_, size_type(std::ceil(float(size()) / max_load_factor())));
                rehash_impl(count_);
            }
            void reserve(size_type count_) {
                rehash(size_type(std::ceil(float(count_) / max_load_factor())));
            }
            hasher hash_function() const { return static_cast<const Hash &>(*this); }
            key_equal key_eq() const { return static_cast<const KeyEqual &>(*this); }
            iterator mutable_iterator(const_iterator pos) {
                if (pos.m_buckets_iterator != pos.m_buckets_end_iterator) {
                    auto it = m_buckets_data.begin() + std::distance(m_buckets_data.cbegin(), pos.m_buckets_iterator);
                    return iterator(it, m_buckets_data.end(), m_overflow_elements.begin());
                } else {
                    auto it = mutable_overflow_iterator(pos.m_overflow_iterator);
                    return iterator(m_buckets_data.end(), m_buckets_data.end(), it);
                }
            }
            size_type overflow_size() const noexcept {
                return m_overflow_elements.size();
            }
            template<class U = OverflowContainer, typename std::enable_if<has_key_compare<U>::value>::type * = nullptr>
            typename U::key_compare key_comp() const {
                return m_overflow_elements.key_comp();
            }
        private:
            template<class K>
            std::size_t hash_key(const K &key) const {
                return Hash::operator()(key);
            }
            template<class K1, class K2>
            bool compare_keys(const K1 &key1, const K2 &key2) const {
                return KeyEqual::operator()(key1, key2);
            }
            std::size_t bucket_for_hash(std::size_t hash) const {
                const std::size_t bucket = GrowthPolicy::bucket_for_hash(hash);
                tsl_hh_assert(bucket < m_buckets_data.size() || (bucket == 0 && m_buckets_data.empty()));
                return bucket;
            }
            template<typename U = value_type, typename std::enable_if<std::is_nothrow_move_constructible<U>::value>::type * = nullptr>
            void rehash_impl(size_type count_) {
                hopscotch_hash new_map = new_hopscotch_hash(count_);
                if (!m_overflow_elements.empty()) {
                    new_map.m_overflow_elements.swap(m_overflow_elements);
                    new_map.m_nb_elements += new_map.m_overflow_elements.size();
                    for (const value_type &value: new_map.m_overflow_elements) {
                        const std::size_t ibucket_for_hash = new_map.bucket_for_hash(new_map.hash_key(KeySelect()(value)));
                        new_map.m_buckets[ibucket_for_hash].set_overflow(true);
                    }
                }
#ifndef TSL_HH_NO_EXCEPTIONS
                try {
#endif
                    const bool use_stored_hash = USE_STORED_HASH_ON_REHASH(new_map.bucket_count());
                    for (auto it_bucket = m_buckets_data.begin(); it_bucket != m_buckets_data.end(); ++it_bucket) {
                        if (it_bucket->empty()) {
                            continue;
                        }
                        const std::size_t hash = use_stored_hash ? it_bucket->truncated_bucket_hash() : new_map.hash_key(KeySelect()(it_bucket->value()));
                        const std::size_t ibucket_for_hash = new_map.bucket_for_hash(hash);
                        new_map.insert_value(ibucket_for_hash, hash, std::move(it_bucket->value()));
                        erase_from_bucket(*it_bucket, bucket_for_hash(hash));
                    }
#ifndef TSL_HH_NO_EXCEPTIONS
                } catch (...) {
                    m_overflow_elements.swap(new_map.m_overflow_elements);
                    const bool use_stored_hash = USE_STORED_HASH_ON_REHASH(new_map.bucket_count());
                    for (auto it_bucket = new_map.m_buckets_data.begin(); it_bucket != new_map.m_buckets_data.end(); ++it_bucket) {
                        if (it_bucket->empty()) {
                            continue;
                        }
                        const std::size_t hash = use_stored_hash ? it_bucket->truncated_bucket_hash() : hash_key(KeySelect()(it_bucket->value()));
                        const std::size_t ibucket_for_hash = bucket_for_hash(hash);
                        insert_value(ibucket_for_hash, hash, std::move(it_bucket->value()));
                    }
                    throw;
                }
#endif
                new_map.swap(*this);
            }
            template<typename U = value_type, typename std::enable_if<std::is_copy_constructible<U>::value && !std::is_nothrow_move_constructible<U>::value>::type * = nullptr>
            void rehash_impl(size_type count_) {
                hopscotch_hash new_map = new_hopscotch_hash(count_);
                const bool use_stored_hash = USE_STORED_HASH_ON_REHASH(new_map.bucket_count());
                for (const hopscotch_bucket &bucket: m_buckets_data) {
                    if (bucket.empty()) {
                        continue;
                    }
                    const std::size_t hash = use_stored_hash ? bucket.truncated_bucket_hash() : new_map.hash_key(KeySelect()(bucket.value()));
                    const std::size_t ibucket_for_hash = new_map.bucket_for_hash(hash);
                    new_map.insert_value(ibucket_for_hash, hash, bucket.value());
                }
                for (const value_type &value: m_overflow_elements) {
                    const std::size_t hash = new_map.hash_key(KeySelect()(value));
                    const std::size_t ibucket_for_hash = new_map.bucket_for_hash(hash);
                    new_map.insert_value(ibucket_for_hash, hash, value);
                }
                new_map.swap(*this);
            }
#ifdef TSL_HH_NO_RANGE_ERASE_WITH_CONST_ITERATOR
            iterator_overflow mutable_overflow_iterator(const_iterator_overflow it) {
    return std::next(m_overflow_elements.begin(),
                     std::distance(m_overflow_elements.cbegin(), it));
  }
#else
            iterator_overflow mutable_overflow_iterator(const_iterator_overflow it) {
                return m_overflow_elements.erase(it, it);
            }
#endif
            iterator_overflow erase_from_overflow(const_iterator_overflow pos, std::size_t ibucket_for_hash) {
#ifdef TSL_HH_NO_RANGE_ERASE_WITH_CONST_ITERATOR
                auto it_next = m_overflow_elements.erase(mutable_overflow_iterator(pos));
#else
                auto it_next = m_overflow_elements.erase(pos);
#endif
                m_nb_elements--;
                tsl_hh_assert(m_buckets[ibucket_for_hash].has_overflow());
                for (const value_type &value: m_overflow_elements) {
                    const std::size_t bucket_for_value = bucket_for_hash(hash_key(KeySelect()(value)));
                    if (bucket_for_value == ibucket_for_hash) {
                        return it_next;
                    }
                }
                m_buckets[ibucket_for_hash].set_overflow(false);
                return it_next;
            }
            void erase_from_bucket(hopscotch_bucket &bucket_for_value, std::size_t ibucket_for_hash) noexcept {
                const std::size_t ibucket_for_value = std::distance(m_buckets_data.data(), &bucket_for_value);
                tsl_hh_assert(ibucket_for_value >= ibucket_for_hash);
                bucket_for_value.remove_value();
                m_buckets[ibucket_for_hash].toggle_neighbor_presence(ibucket_for_value - ibucket_for_hash);
                m_nb_elements--;
            }
            template<class K, class M>
            std::pair<iterator, bool> insert_or_assign_impl(K &&key, M &&obj) {
                auto it = try_emplace_impl(std::forward<K>(key), std::forward<M>(obj));
                if (!it.second) {
                    it.first.value() = std::forward<M>(obj);
                }
                return it;
            }
            template<typename P, class... Args>
            std::pair<iterator, bool> try_emplace_impl(P &&key, Args &&... args_value) {
                const std::size_t hash = hash_key(key);
                const std::size_t ibucket_for_hash = bucket_for_hash(hash);
                auto it_find = find_impl(key, hash, m_buckets + ibucket_for_hash);
                if (it_find != end()) {
                    return std::make_pair(it_find, false);
                }
                return insert_value(ibucket_for_hash, hash, std::piecewise_construct, std::forward_as_tuple(std::forward<P>(key)), std::forward_as_tuple(std::forward<Args>(args_value)...));
            }
            template<typename P>
            std::pair<iterator, bool> insert_impl(P &&value) {
                const std::size_t hash = hash_key(KeySelect()(value));
                const std::size_t ibucket_for_hash = bucket_for_hash(hash);
                auto it_find = find_impl(KeySelect()(value), hash, m_buckets + ibucket_for_hash);
                if (it_find != end()) {
                    return std::make_pair(it_find, false);
                }
                return insert_value(ibucket_for_hash, hash, std::forward<P>(value));
            }
            template<typename... Args>
            std::pair<iterator, bool> insert_value(std::size_t ibucket_for_hash, std::size_t hash, Args &&... value_type_args) {
                if ((m_nb_elements - m_overflow_elements.size()) >= m_max_load_threshold_rehash) {
                    rehash(GrowthPolicy::next_bucket_count());
                    ibucket_for_hash = bucket_for_hash(hash);
                }
                std::size_t ibucket_empty = find_empty_bucket(ibucket_for_hash);
                if (ibucket_empty < m_buckets_data.size()) {
                    do {
                        tsl_hh_assert(ibucket_empty >= ibucket_for_hash);
                        if (ibucket_empty - ibucket_for_hash < NeighborhoodSize) {
                            auto it = insert_in_bucket(ibucket_empty, ibucket_for_hash, hash, std::forward<Args>(value_type_args)...);
                            return std::make_pair(iterator(it, m_buckets_data.end(), m_overflow_elements.begin()), true);
                        }
                    } while (swap_empty_bucket_closer(ibucket_empty));
                }
                if (size() < m_min_load_threshold_rehash || !will_neighborhood_change_on_rehash(ibucket_for_hash)) {
                    auto it = insert_in_overflow(ibucket_for_hash, std::forward<Args>(value_type_args)...);
                    return std::make_pair(iterator(m_buckets_data.end(), m_buckets_data.end(), it), true);
                }
                rehash(GrowthPolicy::next_bucket_count());
                ibucket_for_hash = bucket_for_hash(hash);
                return insert_value(ibucket_for_hash, hash, std::forward<Args>(value_type_args)...);
            }
            bool will_neighborhood_change_on_rehash(size_t ibucket_neighborhood_check) const {
                std::size_t expand_bucket_count = GrowthPolicy::next_bucket_count();
                GrowthPolicy expand_growth_policy(expand_bucket_count);
                const bool use_stored_hash = USE_STORED_HASH_ON_REHASH(expand_bucket_count);
                for (size_t ibucket = ibucket_neighborhood_check; ibucket < m_buckets_data.size() && (ibucket - ibucket_neighborhood_check) < NeighborhoodSize; ++ibucket) {
                    tsl_hh_assert(!m_buckets[ibucket].empty());
                    const size_t hash = use_stored_hash ? m_buckets[ibucket].truncated_bucket_hash() : hash_key(KeySelect()(m_buckets[ibucket].value()));
                    if (bucket_for_hash(hash) != expand_growth_policy.bucket_for_hash(hash)) {
                        return true;
                    }
                }
                return false;
            }
            std::size_t find_empty_bucket(std::size_t ibucket_start) const {
                const std::size_t limit = std::min(ibucket_start + MAX_PROBES_FOR_EMPTY_BUCKET, m_buckets_data.size());
                for (; ibucket_start < limit; ibucket_start++) {
                    if (m_buckets[ibucket_start].empty()) {
                        return ibucket_start;
                    }
                }
                return m_buckets_data.size();
            }
            template<typename... Args>
            iterator_buckets insert_in_bucket(std::size_t ibucket_empty, std::size_t ibucket_for_hash, std::size_t hash, Args &&... value_type_args) {
                tsl_hh_assert(ibucket_empty >= ibucket_for_hash);
                tsl_hh_assert(m_buckets[ibucket_empty].empty());
                m_buckets[ibucket_empty].set_value_of_empty_bucket(hopscotch_bucket::truncate_hash(hash), std::forward<Args>(value_type_args)...);
                tsl_hh_assert(!m_buckets[ibucket_for_hash].empty());
                m_buckets[ibucket_for_hash].toggle_neighbor_presence(ibucket_empty - ibucket_for_hash);
                m_nb_elements++;
                return m_buckets_data.begin() + ibucket_empty;
            }
            template<class... Args, class U = OverflowContainer, typename std::enable_if<!has_key_compare<U>::value>::type * = nullptr>
            iterator_overflow insert_in_overflow(std::size_t ibucket_for_hash, Args &&... value_type_args) {
                auto it = m_overflow_elements.emplace(m_overflow_elements.end(), std::forward<Args>(value_type_args)...);
                m_buckets[ibucket_for_hash].set_overflow(true);
                m_nb_elements++;
                return it;
            }
            template<class... Args, class U = OverflowContainer, typename std::enable_if<has_key_compare<U>::value>::type * = nullptr>
            iterator_overflow insert_in_overflow(std::size_t ibucket_for_hash, Args &&... value_type_args) {
                auto it = m_overflow_elements.emplace(std::forward<Args>(value_type_args)...).first;
                m_buckets[ibucket_for_hash].set_overflow(true);
                m_nb_elements++;
                return it;
            }
            bool swap_empty_bucket_closer(std::size_t &ibucket_empty_in_out) {
                tsl_hh_assert(ibucket_empty_in_out >= NeighborhoodSize);
                const std::size_t neighborhood_start = ibucket_empty_in_out - NeighborhoodSize + 1;
                for (std::size_t to_check = neighborhood_start; to_check < ibucket_empty_in_out; to_check++) {
                    neighborhood_bitmap neighborhood_infos = m_buckets[to_check].neighborhood_infos();
                    std::size_t to_swap = to_check;
                    while (neighborhood_infos != 0 && to_swap < ibucket_empty_in_out) {
                        if ((neighborhood_infos & 1) == 1) {
                            tsl_hh_assert(m_buckets[ibucket_empty_in_out].empty());
                            tsl_hh_assert(!m_buckets[to_swap].empty());
                            m_buckets[to_swap].swap_value_into_empty_bucket(m_buckets[ibucket_empty_in_out]);
                            tsl_hh_assert(!m_buckets[to_check].check_neighbor_presence(ibucket_empty_in_out - to_check));
                            tsl_hh_assert(m_buckets[to_check].check_neighbor_presence(to_swap - to_check));
                            m_buckets[to_check].toggle_neighbor_presence(ibucket_empty_in_out - to_check);
                            m_buckets[to_check].toggle_neighbor_presence(to_swap - to_check);
                            ibucket_empty_in_out = to_swap;
                            return true;
                        }
                        to_swap++;
                        neighborhood_infos = neighborhood_bitmap(neighborhood_infos >> 1);
                    }
                }
                return false;
            }
            template<class K, class U = ValueSelect, typename std::enable_if<has_mapped_type<U>::value>::type * = nullptr>
            typename U::value_type *find_value_impl(const K &key, std::size_t hash, hopscotch_bucket *bucket_for_hash) {
                return const_cast<typename U::value_type *>(
                        static_cast<const hopscotch_hash *>(this)->find_value_impl(key, hash, bucket_for_hash));
            }
            template<class K, class U = ValueSelect, typename std::enable_if<has_mapped_type<U>::value>::type * = nullptr>
            const typename U::value_type *find_value_impl(const K &key, std::size_t hash, const hopscotch_bucket *bucket_for_hash) const {
                const hopscotch_bucket *bucket_found = find_in_buckets(key, hash, bucket_for_hash);
                if (bucket_found != nullptr) {
                    return std::addressof(ValueSelect()(bucket_found->value()));
                }
                if (bucket_for_hash->has_overflow()) {
                    auto it_overflow = find_in_overflow(key);
                    if (it_overflow != m_overflow_elements.end()) {
                        return std::addressof(ValueSelect()(*it_overflow));
                    }
                }
                return nullptr;
            }
            template<class K>
            size_type count_impl(const K &key, std::size_t hash, const hopscotch_bucket *bucket_for_hash) const {
                if (find_in_buckets(key, hash, bucket_for_hash) != nullptr) {
                    return 1;
                } else if (bucket_for_hash->has_overflow() && find_in_overflow(key) != m_overflow_elements.cend()) {
                    return 1;
                } else {
                    return 0;
                }
            }
            template<class K>
            iterator find_impl(const K &key, std::size_t hash, hopscotch_bucket *bucket_for_hash) {
                hopscotch_bucket *bucket_found = find_in_buckets(key, hash, bucket_for_hash);
                if (bucket_found != nullptr) {
                    return iterator(m_buckets_data.begin() + std::distance(m_buckets_data.data(), bucket_found), m_buckets_data.end(), m_overflow_elements.begin());
                }
                if (!bucket_for_hash->has_overflow()) {
                    return end();
                }
                return iterator(m_buckets_data.end(), m_buckets_data.end(), find_in_overflow(key));
            }
            template<class K>
            const_iterator find_impl(const K &key, std::size_t hash, const hopscotch_bucket *bucket_for_hash) const {
                const hopscotch_bucket *bucket_found = find_in_buckets(key, hash, bucket_for_hash);
                if (bucket_found != nullptr) {
                    return const_iterator(m_buckets_data.cbegin() + std::distance(m_buckets_data.data(), bucket_found), m_buckets_data.cend(), m_overflow_elements.cbegin());
                }
                if (!bucket_for_hash->has_overflow()) {
                    return cend();
                }
                return const_iterator(m_buckets_data.cend(), m_buckets_data.cend(), find_in_overflow(key));
            }
            template<class K>
            hopscotch_bucket *find_in_buckets(const K &key, std::size_t hash, hopscotch_bucket *bucket_for_hash) {
                const hopscotch_bucket *bucket_found = static_cast<const hopscotch_hash *>(this)->find_in_buckets(key, hash, bucket_for_hash);
                return const_cast<hopscotch_bucket *>(bucket_found);
            }
            template<class K>
            const hopscotch_bucket *find_in_buckets(const K &key, std::size_t hash, const hopscotch_bucket *bucket_for_hash) const {
                (void) hash;
                neighborhood_bitmap neighborhood_infos = bucket_for_hash->neighborhood_infos();
                while (neighborhood_infos != 0) {
                    if ((neighborhood_infos & 1) == 1) {
                        if ((!StoreHash || bucket_for_hash->bucket_hash_equal(hash)) && compare_keys(KeySelect()(bucket_for_hash->value()), key)) {
                            return bucket_for_hash;
                        }
                    }
                    ++bucket_for_hash;
                    neighborhood_infos = neighborhood_bitmap(neighborhood_infos >> 1);
                }
                return nullptr;
            }
            template<class K, class U = OverflowContainer, typename std::enable_if<!has_key_compare<U>::value>::type * = nullptr>
            iterator_overflow find_in_overflow(const K &key) {
                return std::find_if(m_overflow_elements.begin(), m_overflow_elements.end(), [&](const value_type &value) {
                    return compare_keys(key, KeySelect()(value));
                });
            }
            template<class K, class U = OverflowContainer, typename std::enable_if<!has_key_compare<U>::value>::type * = nullptr>
            const_iterator_overflow find_in_overflow(const K &key) const {
                return std::find_if(m_overflow_elements.cbegin(), m_overflow_elements.cend(), [&](const value_type &value) {
                    return compare_keys(key, KeySelect()(value));
                });
            }
            template<class K, class U = OverflowContainer, typename std::enable_if<has_key_compare<U>::value>::type * = nullptr>
            iterator_overflow find_in_overflow(const K &key) {
                return m_overflow_elements.find(key);
            }
            template<class K, class U = OverflowContainer, typename std::enable_if<has_key_compare<U>::value>::type * = nullptr>
            const_iterator_overflow find_in_overflow(const K &key) const {
                return m_overflow_elements.find(key);
            }
            template<class U = OverflowContainer, typename std::enable_if<!has_key_compare<U>::value>::type * = nullptr>
            hopscotch_hash new_hopscotch_hash(size_type bucket_count) {
                return hopscotch_hash(bucket_count, static_cast<Hash &>(*this), static_cast<KeyEqual &>(*this), get_allocator(), m_max_load_factor);
            }
            template<class U = OverflowContainer, typename std::enable_if<has_key_compare<U>::value>::type * = nullptr>
            hopscotch_hash new_hopscotch_hash(size_type bucket_count) {
                return hopscotch_hash(bucket_count, static_cast<Hash &>(*this), static_cast<KeyEqual &>(*this), get_allocator(), m_max_load_factor, m_overflow_elements.key_comp());
            }
        public:
            static const size_type DEFAULT_INIT_BUCKETS_SIZE = 0;
            static constexpr float DEFAULT_MAX_LOAD_FACTOR = (NeighborhoodSize <= 30) ? 0.8f : 0.9f;
        private:
            static const std::size_t MAX_PROBES_FOR_EMPTY_BUCKET = 12 * NeighborhoodSize;
            static constexpr float MIN_LOAD_FACTOR_FOR_REHASH = 0.1f;
            template<class T = size_type, typename std::enable_if<std::is_same<T, truncated_hash_type>::value>::type * = nullptr>
            static bool USE_STORED_HASH_ON_REHASH(size_type /*bucket_count*/) {
                return StoreHash;
            }
            template<class T = size_type, typename std::enable_if<!std::is_same<T, truncated_hash_type>::value>::type * = nullptr>
            static bool USE_STORED_HASH_ON_REHASH(size_type bucket_count) {
                (void) bucket_count;
                if (StoreHash && is_power_of_two_policy<GrowthPolicy>::value) {
                    tsl_hh_assert(bucket_count > 0);
                    return (bucket_count - 1) <= std::numeric_limits<truncated_hash_type>::max();
                } else {
                    return false;
                }
            }
            hopscotch_bucket *static_empty_bucket_ptr() {
                static hopscotch_bucket empty_bucket;
                return &empty_bucket;
            }
        private:
            buckets_container_type m_buckets_data;
            overflow_container_type m_overflow_elements;
            hopscotch_bucket *m_buckets;
            size_type m_nb_elements;
            size_type m_min_load_threshold_rehash;
            size_type m_max_load_threshold_rehash;
            float m_max_load_factor;
        };
    }  // end namespace detail_hopscotch_hash
}  // end namespace tsl
#endif
namespace tsl {
    template<class Key, class T, class Hash = std::hash<Key>, class KeyEqual = std::equal_to<Key>, class Allocator = std::allocator<std::pair<Key, T>>, unsigned int NeighborhoodSize = 62, bool StoreHash = false, class GrowthPolicy = tsl::hh::power_of_two_growth_policy<2>>
    class hopscotch_map {
    private:
        template<typename U> using has_is_transparent = tsl::detail_hopscotch_hash::has_is_transparent<U>;
        class KeySelect {
        public:
            using key_type = Key;
            const key_type &operator()(const std::pair<Key, T> &key_value) const {
                return key_value.first;
            }
            key_type &operator()(std::pair<Key, T> &key_value) {
                return key_value.first;
            }
        };
        class ValueSelect {
        public:
            using value_type = T;
            const value_type &operator()(const std::pair<Key, T> &key_value) const {
                return key_value.second;
            }
            value_type &operator()(std::pair<Key, T> &key_value) {
                return key_value.second;
            }
        };
        using overflow_container_type = std::list<std::pair<Key, T>, Allocator>;
        using ht = detail_hopscotch_hash::hopscotch_hash<std::pair<Key, T>, KeySelect, ValueSelect, Hash, KeyEqual, Allocator, NeighborhoodSize, StoreHash, GrowthPolicy, overflow_container_type>;
    public:
        using key_type = typename ht::key_type;
        using mapped_type = T;
        using value_type = typename ht::value_type;
        using size_type = typename ht::size_type;
        using difference_type = typename ht::difference_type;
        using hasher = typename ht::hasher;
        using key_equal = typename ht::key_equal;
        using allocator_type = typename ht::allocator_type;
        using reference = typename ht::reference;
        using const_reference = typename ht::const_reference;
        using pointer = typename ht::pointer;
        using const_pointer = typename ht::const_pointer;
        using iterator = typename ht::iterator;
        using const_iterator = typename ht::const_iterator;
        hopscotch_map() : hopscotch_map(ht::DEFAULT_INIT_BUCKETS_SIZE) {}
        explicit hopscotch_map(size_type bucket_count, const Hash &hash = Hash(), const KeyEqual &equal = KeyEqual(), const Allocator &alloc = Allocator()) : m_ht(bucket_count, hash, equal, alloc, ht::DEFAULT_MAX_LOAD_FACTOR) {}
        hopscotch_map(size_type bucket_count, const Allocator &alloc) : hopscotch_map(bucket_count, Hash(), KeyEqual(), alloc) {}
        hopscotch_map(size_type bucket_count, const Hash &hash, const Allocator &alloc) : hopscotch_map(bucket_count, hash, KeyEqual(), alloc) {}
        explicit hopscotch_map(const Allocator &alloc) : hopscotch_map(ht::DEFAULT_INIT_BUCKETS_SIZE, alloc) {}
        hopscotch_map(const hopscotch_map &other, const Allocator &alloc) : m_ht(other.m_ht, alloc) {}
        template<class InputIt>
        hopscotch_map(InputIt first, InputIt last, size_type bucket_count = ht::DEFAULT_INIT_BUCKETS_SIZE, const Hash &hash = Hash(), const KeyEqual &equal = KeyEqual(), const Allocator &alloc = Allocator())
                : hopscotch_map(bucket_count, hash, equal, alloc) {
            insert(first, last);
        }
        template<class InputIt>
        hopscotch_map(InputIt first, InputIt last, size_type bucket_count, const Allocator &alloc)
                : hopscotch_map(first, last, bucket_count, Hash(), KeyEqual(), alloc) {}
        template<class InputIt>
        hopscotch_map(InputIt first, InputIt last, size_type bucket_count, const Hash &hash, const Allocator &alloc)
                : hopscotch_map(first, last, bucket_count, hash, KeyEqual(), alloc) {}
        hopscotch_map(std::initializer_list<value_type> init, size_type bucket_count = ht::DEFAULT_INIT_BUCKETS_SIZE, const Hash &hash = Hash(), const KeyEqual &equal = KeyEqual(), const Allocator &alloc = Allocator()) : hopscotch_map(init.begin(), init.end(), bucket_count, hash, equal, alloc) {}
        hopscotch_map(std::initializer_list<value_type> init, size_type bucket_count, const Allocator &alloc) : hopscotch_map(init.begin(), init.end(), bucket_count, Hash(), KeyEqual(), alloc) {}
        hopscotch_map(std::initializer_list<value_type> init, size_type bucket_count, const Hash &hash, const Allocator &alloc) : hopscotch_map(init.begin(), init.end(), bucket_count, hash, KeyEqual(), alloc) {}
        hopscotch_map &operator=(std::initializer_list<value_type> ilist) {
            m_ht.clear();
            m_ht.reserve(ilist.size());
            m_ht.insert(ilist.begin(), ilist.end());
            return *this;
        }
        allocator_type get_allocator() const { return m_ht.get_allocator(); }
        iterator begin() noexcept { return m_ht.begin(); }
        const_iterator begin() const noexcept { return m_ht.begin(); }
        const_iterator cbegin() const noexcept { return m_ht.cbegin(); }
        iterator end() noexcept { return m_ht.end(); }
        const_iterator end() const noexcept { return m_ht.end(); }
        const_iterator cend() const noexcept { return m_ht.cend(); }
        bool empty() const noexcept { return m_ht.empty(); }
        size_type size() const noexcept { return m_ht.size(); }
        size_type max_size() const noexcept { return m_ht.max_size(); }
        void clear() noexcept { m_ht.clear(); }
        std::pair<iterator, bool> insert(const value_type &value) {
            return m_ht.insert(value);
        }
        template<class P, typename std::enable_if<std::is_constructible<value_type, P &&>::value>::type * = nullptr>
        std::pair<iterator, bool> insert(P &&value) {
            return m_ht.insert(std::forward<P>(value));
        }
        std::pair<iterator, bool> insert(value_type &&value) {
            return m_ht.insert(std::move(value));
        }
        iterator insert(const_iterator hint, const value_type &value) {
            return m_ht.insert(hint, value);
        }
        template<class P, typename std::enable_if<std::is_constructible<value_type, P &&>::value>::type * = nullptr>
        iterator insert(const_iterator hint, P &&value) {
            return m_ht.insert(hint, std::forward<P>(value));
        }
        iterator insert(const_iterator hint, value_type &&value) {
            return m_ht.insert(hint, std::move(value));
        }
        template<class InputIt>
        void insert(InputIt first, InputIt last) {
            m_ht.insert(first, last);
        }
        void insert(std::initializer_list<value_type> ilist) {
            m_ht.insert(ilist.begin(), ilist.end());
        }
        template<class M>
        std::pair<iterator, bool> insert_or_assign(const key_type &k, M &&obj) {
            return m_ht.insert_or_assign(k, std::forward<M>(obj));
        }
        template<class M>
        std::pair<iterator, bool> insert_or_assign(key_type &&k, M &&obj) {
            return m_ht.insert_or_assign(std::move(k), std::forward<M>(obj));
        }
        template<class M>
        iterator insert_or_assign(const_iterator hint, const key_type &k, M &&obj) {
            return m_ht.insert_or_assign(hint, k, std::forward<M>(obj));
        }
        template<class M>
        iterator insert_or_assign(const_iterator hint, key_type &&k, M &&obj) {
            return m_ht.insert_or_assign(hint, std::move(k), std::forward<M>(obj));
        }
        template<class... Args>
        std::pair<iterator, bool> emplace(Args &&... args) {
            return m_ht.emplace(std::forward<Args>(args)...);
        }
        template<class... Args>
        iterator emplace_hint(const_iterator hint, Args &&... args) {
            return m_ht.emplace_hint(hint, std::forward<Args>(args)...);
        }
        template<class... Args>
        std::pair<iterator, bool> try_emplace(const key_type &k, Args &&... args) {
            return m_ht.try_emplace(k, std::forward<Args>(args)...);
        }
        template<class... Args>
        std::pair<iterator, bool> try_emplace(key_type &&k, Args &&... args) {
            return m_ht.try_emplace(std::move(k), std::forward<Args>(args)...);
        }
        template<class... Args>
        iterator try_emplace(const_iterator hint, const key_type &k, Args &&... args) {
            return m_ht.try_emplace(hint, k, std::forward<Args>(args)...);
        }
        template<class... Args>
        iterator try_emplace(const_iterator hint, key_type &&k, Args &&... args) {
            return m_ht.try_emplace(hint, std::move(k), std::forward<Args>(args)...);
        }
        iterator erase(iterator pos) { return m_ht.erase(pos); }
        iterator erase(const_iterator pos) { return m_ht.erase(pos); }
        iterator erase(const_iterator first, const_iterator last) {
            return m_ht.erase(first, last);
        }
        size_type erase(const key_type &key) { return m_ht.erase(key); }
        size_type erase(const key_type &key, std::size_t precalculated_hash) {
            return m_ht.erase(key, precalculated_hash);
        }
        template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type * = nullptr>
        size_type erase(const K &key) {
            return m_ht.erase(key);
        }
        template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type * = nullptr>
        size_type erase(const K &key, std::size_t precalculated_hash) {
            return m_ht.erase(key, precalculated_hash);
        }
        void swap(hopscotch_map &other) { other.m_ht.swap(m_ht); }
        T &at(const Key &key) { return m_ht.at(key); }
        T &at(const Key &key, std::size_t precalculated_hash) {
            return m_ht.at(key, precalculated_hash);
        }
        const T &at(const Key &key) const { return m_ht.at(key); }
        const T &at(const Key &key, std::size_t precalculated_hash) const {
            return m_ht.at(key, precalculated_hash);
        }
        template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type * = nullptr>
        T &at(const K &key) {
            return m_ht.at(key);
        }
        template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type * = nullptr>
        T &at(const K &key, std::size_t precalculated_hash) {
            return m_ht.at(key, precalculated_hash);
        }
        template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type * = nullptr>
        const T &at(const K &key) const {
            return m_ht.at(key);
        }
        template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type * = nullptr>
        const T &at(const K &key, std::size_t precalculated_hash) const {
            return m_ht.at(key, precalculated_hash);
        }
        T &operator[](const Key &key) { return m_ht[key]; }
        T &operator[](Key &&key) { return m_ht[std::move(key)]; }
        size_type count(const Key &key) const { return m_ht.count(key); }
        size_type count(const Key &key, std::size_t precalculated_hash) const {
            return m_ht.count(key, precalculated_hash);
        }
        template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type * = nullptr>
        size_type count(const K &key) const {
            return m_ht.count(key);
        }
        template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type * = nullptr>
        size_type count(const K &key, std::size_t precalculated_hash) const {
            return m_ht.count(key, precalculated_hash);
        }
        iterator find(const Key &key) { return m_ht.find(key); }
        iterator find(const Key &key, std::size_t precalculated_hash) {
            return m_ht.find(key, precalculated_hash);
        }
        const_iterator find(const Key &key) const { return m_ht.find(key); }
        const_iterator find(const Key &key, std::size_t precalculated_hash) const {
            return m_ht.find(key, precalculated_hash);
        }
        template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type * = nullptr>
        iterator find(const K &key) {
            return m_ht.find(key);
        }
        template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type * = nullptr>
        iterator find(const K &key, std::size_t precalculated_hash) {
            return m_ht.find(key, precalculated_hash);
        }
        template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type * = nullptr>
        const_iterator find(const K &key) const {
            return m_ht.find(key);
        }
        template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type * = nullptr>
        const_iterator find(const K &key, std::size_t precalculated_hash) const {
            return m_ht.find(key, precalculated_hash);
        }
        bool contains(const Key &key) const { return m_ht.contains(key); }
        bool contains(const Key &key, std::size_t precalculated_hash) const {
            return m_ht.contains(key, precalculated_hash);
        }
        template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type * = nullptr>
        bool contains(const K &key) const {
            return m_ht.contains(key);
        }
        template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type * = nullptr>
        bool contains(const K &key, std::size_t precalculated_hash) const {
            return m_ht.contains(key, precalculated_hash);
        }
        std::pair<iterator, iterator> equal_range(const Key &key) {
            return m_ht.equal_range(key);
        }
        std::pair<iterator, iterator> equal_range(const Key &key, std::size_t precalculated_hash) {
            return m_ht.equal_range(key, precalculated_hash);
        }
        std::pair<const_iterator, const_iterator> equal_range(const Key &key) const {
            return m_ht.equal_range(key);
        }
        std::pair<const_iterator, const_iterator> equal_range(const Key &key, std::size_t precalculated_hash) const {
            return m_ht.equal_range(key, precalculated_hash);
        }
        template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type * = nullptr>
        std::pair<iterator, iterator> equal_range(const K &key) {
            return m_ht.equal_range(key);
        }
        template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type * = nullptr>
        std::pair<iterator, iterator> equal_range(const K &key, std::size_t precalculated_hash) {
            return m_ht.equal_range(key, precalculated_hash);
        }
        template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type * = nullptr>
        std::pair<const_iterator, const_iterator> equal_range(const K &key) const {
            return m_ht.equal_range(key);
        }
        template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type * = nullptr>
        std::pair<const_iterator, const_iterator> equal_range(const K &key, std::size_t precalculated_hash) const {
            return m_ht.equal_range(key, precalculated_hash);
        }
        size_type bucket_count() const { return m_ht.bucket_count(); }
        size_type max_bucket_count() const { return m_ht.max_bucket_count(); }
        float load_factor() const { return m_ht.load_factor(); }
        float max_load_factor() const { return m_ht.max_load_factor(); }
        void max_load_factor(float ml) { m_ht.max_load_factor(ml); }
        void rehash(size_type count_) { m_ht.rehash(count_); }
        void reserve(size_type count_) { m_ht.reserve(count_); }
        hasher hash_function() const { return m_ht.hash_function(); }
        key_equal key_eq() const { return m_ht.key_eq(); }
        iterator mutable_iterator(const_iterator pos) {
            return m_ht.mutable_iterator(pos);
        }
        size_type overflow_size() const noexcept { return m_ht.overflow_size(); }
        friend bool operator==(const hopscotch_map &lhs, const hopscotch_map &rhs) {
            if (lhs.size() != rhs.size()) {
                return false;
            }
            for (const auto &element_lhs: lhs) {
                const auto it_element_rhs = rhs.find(element_lhs.first);
                if (it_element_rhs == rhs.cend() || element_lhs.second != it_element_rhs->second) {
                    return false;
                }
            }
            return true;
        }
        friend bool operator!=(const hopscotch_map &lhs, const hopscotch_map &rhs) {
            return !operator==(lhs, rhs);
        }
        friend void swap(hopscotch_map &lhs, hopscotch_map &rhs) { lhs.swap(rhs); }
    private:
        ht m_ht;
    };
    template<class Key, class T, class Hash = std::hash<Key>, class KeyEqual = std::equal_to<Key>, class Allocator = std::allocator<std::pair<Key, T>>, unsigned int NeighborhoodSize = 62, bool StoreHash = false> using hopscotch_pg_map = hopscotch_map<Key, T, Hash, KeyEqual, Allocator, NeighborhoodSize, StoreHash, tsl::hh::prime_growth_policy>;
}  // end namespace tsl
#endif
using namespace std;
#include <iostream>
#define int long long
int my_abs(int x) {if (x < 0) {return -x;} else {return x;}}
signed main() {
    cin.tie(nullptr);
    ios::sync_with_stdio(false);
    vector<vector<int>> C(2000, vector<int>(30));
    for (int k = 1; k <= 2; k++) C[0][k] = 0;
    for (int n = 0; n <= 1000; n++) C[n][0] = 1;
    for (int n = 1; n <= 1000; n++)
        for (int k = 1; k <= 2; k++)
            C[n][k] = C[n - 1][k - 1] + C[n - 1][k];
    int n;
    cin >> n;
    vector<int> seq(n);
    for (int i = 0; i < n; ++i) {
        cin >> seq[i];
    }
    vector<int> prev;
    prev.push_back(0);
    for (int i = 0; i <= n; ++i) {
        prev.push_back(prev[i] + seq[i]);
    }
    vector<int> b;
    for (int i = 0; i < n; ++i) {
        for (int j = i; j < n; ++j) {
            if (i == j) {
                b.push_back(seq[i]);
            } else {
                b.push_back(prev[j + 1] - prev[i]);
            }
        }
    }
    vector<int> P;
    vector<int> N;
    for (auto el: b) {
        if (el >= 0) {
            P.push_back(el);
        } else {
            N.push_back(el);
        }
    }
    std::sort(P.begin(), P.end());
    std::sort(N.begin(), N.end(), greater<>());
    tsl::hopscotch_map<int, pair<int, int>> HTP;
    tsl::hopscotch_map<int, pair<int, int>> HTN;
    for (int i = 0; i < P.size(); ++i) {
        auto cached = HTP.find(P[i]);
        if (cached == HTP.end()) {HTP[P[i]].second = 1;HTP[P[i]].first = -1;} else {HTP[P[i]].second++;}
    }
    for (int i = 0; i < N.size(); ++i) {
        auto cached = HTN.find(N[i]);
        if (cached == HTN.end()) {HTN[N[i]].second = 1;HTN[N[i]].first = -1;} else {HTN[N[i]].second++;}
    }
    P.erase(unique(P.begin(), P.end()), P.end());
    N.erase(unique(N.begin(), N.end()), N.end());
    for (int i = 0; i < P.size(); ++i) {
        if (HTP[P[i]].first == -1) {
            HTP[P[i]].first = i;
        }
    }
    for (int i = 0; i < N.size(); ++i) {
        if (HTN[N[i]].first == -1) {
            HTN[N[i]].first = i;
        }
    }
    long long res = 0;
    for (int i = 0; i < N.size(); ++i) {
        int a = N[i];
        for (int j = 0; j < P.size(); ++j) {
            int b = P[j];
            int c = -(a + b);
            if (c < b) {
                break;
            }
            if (HTP[c].first != -1) {
                if (b == c && HTP[c].second < 2) {
                    continue;
                }
                int to_add;
                if (c >= 0) {
                    if (b == c) {
                        to_add = HTN[a].second * C[HTP[b].second][2];
                    } else {
                        to_add = HTN[a].second * HTP[b].second * HTP[c].second;
                    }
                    res += to_add;
                } else {
                    if (a == c) {
                        to_add = HTP[b].second * C[HTN[a].second][2];
                    } else {
                        to_add = HTN[a].second * HTP[b].second * HTN[c].second;
                    }
                    res += to_add;
                }
            }
        }
    }
    for (int i = 0; i < P.size(); ++i) {
        int a = P[i];
        for (int j = 0; j < N.size(); ++j) {
            int b = N[j];
            int c = -(a + b);
            if (c > b) {
                break;
            }
            if (HTN[c].first != -1) {
                if (b == c && HTN[c].second < 2) {
                    continue;
                }
                int to_add;
                if (c >= 0) {
                    if (a == c) {
                        to_add = HTN[b].second * C[HTP[a].second][2];
                    } else {
                        to_add = HTP[a].second * HTN[b].second * HTP[c].second;
                    }
                    res += to_add;
                } else {
                    if (b == c) {
                        to_add = HTP[a].second * C[HTN[b].second][2];
                    } else {
                        to_add = HTP[a].second * HTN[b].second * HTN[c].second;
                    }
                    res += to_add;
                }
            }
        }
    }
    cout << res + (HTP[0].second * (HTP[0].second - 2) * (HTP[0].second - 1)) / 6 << "\n";
}