#ifndef TSL_HOPSCOTCH_MAP_H #define TSL_HOPSCOTCH_MAP_H #include <algorithm> #include <cstddef> #include <functional> #include <initializer_list> #include <list> #include <memory> #include <type_traits> #include <utility> #ifndef TSL_HOPSCOTCH_HASH_H #define TSL_HOPSCOTCH_HASH_H #include <algorithm> #include <cassert> #include <cmath> #include <cstddef> #include <cstdint> #include <functional> #include <initializer_list> #include <iterator> #include <limits> #include <memory> #include <new> #include <stdexcept> #include <tuple> #include <type_traits> #include <utility> #include <vector> #ifndef TSL_HOPSCOTCH_GROWTH_POLICY_H #define TSL_HOPSCOTCH_GROWTH_POLICY_H #include <algorithm> #include <array> #include <climits> #include <cmath> #include <cstddef> #include <cstdint> #include <iterator> #include <limits> #include <ratio> #include <stdexcept> #ifdef TSL_DEBUG #define tsl_hh_assert(expr) assert(expr) #else #define tsl_hh_assert(expr) (static_cast<void>(0)) #endif #if (defined(__cpp_exceptions) || defined(__EXCEPTIONS) || \ (defined(_MSC_VER) && defined(_CPPUNWIND))) && \ !defined(TSL_NO_EXCEPTIONS) #define TSL_HH_THROW_OR_TERMINATE(ex, msg) throw ex(msg) #else #define TSL_HH_NO_EXCEPTIONS #include <exception> #ifdef TSL_DEBUG #include <iostream> #define TSL_HH_THROW_OR_TERMINATE(ex, msg) \ do { \ std::cerr << msg << std::endl; \ std::terminate(); \ } while (0) #else #define TSL_HH_THROW_OR_TERMINATE(ex, msg) std::terminate() #endif #endif namespace tsl { namespace hh { template<std::size_t GrowthFactor> class power_of_two_growth_policy { public: explicit power_of_two_growth_policy(std::size_t &min_bucket_count_in_out) { if (min_bucket_count_in_out > max_bucket_count()) { TSL_HH_THROW_OR_TERMINATE(std::length_error, "The hash table exceeds its maximum size."); } if (min_bucket_count_in_out > 0) { min_bucket_count_in_out = round_up_to_power_of_two(min_bucket_count_in_out); m_mask = min_bucket_count_in_out - 1; } else { m_mask = 0; } } std::size_t bucket_for_hash(std::size_t hash) const noexcept { return hash & m_mask; } std::size_t next_bucket_count() const { if ((m_mask + 1) > max_bucket_count() / GrowthFactor) { TSL_HH_THROW_OR_TERMINATE(std::length_error, "The hash table exceeds its maximum size."); } return (m_mask + 1) * GrowthFactor; } std::size_t max_bucket_count() const { return (std::numeric_limits<std::size_t>::max() / 2) + 1; } void clear() noexcept { m_mask = 0; } private: static std::size_t round_up_to_power_of_two(std::size_t value) { if (is_power_of_two(value)) { return value; } if (value == 0) { return 1; } --value; for (std::size_t i = 1; i < sizeof(std::size_t) * CHAR_BIT; i *= 2) { value |= value >> i; } return value + 1; } static constexpr bool is_power_of_two(std::size_t value) { return value != 0 && (value & (value - 1)) == 0; } private: static_assert(is_power_of_two(GrowthFactor) && GrowthFactor >= 2, "GrowthFactor must be a power of two >= 2."); std::size_t m_mask; }; template<class GrowthFactor = std::ratio<3, 2>> class mod_growth_policy { public: explicit mod_growth_policy(std::size_t &min_bucket_count_in_out) { if (min_bucket_count_in_out > max_bucket_count()) { TSL_HH_THROW_OR_TERMINATE(std::length_error, "The hash table exceeds its maximum size."); } if (min_bucket_count_in_out > 0) { m_mod = min_bucket_count_in_out; } else { m_mod = 1; } } std::size_t bucket_for_hash(std::size_t hash) const noexcept { return hash % m_mod; } std::size_t next_bucket_count() const { if (m_mod == max_bucket_count()) { TSL_HH_THROW_OR_TERMINATE(std::length_error, "The hash table exceeds its maximum size."); } const double next_bucket_count = std::ceil(double(m_mod) * REHASH_SIZE_MULTIPLICATION_FACTOR); if (!std::isnormal(next_bucket_count)) { TSL_HH_THROW_OR_TERMINATE(std::length_error, "The hash table exceeds its maximum size."); } if (next_bucket_count > double(max_bucket_count())) { return max_bucket_count(); } else { return std::size_t(next_bucket_count); } } std::size_t max_bucket_count() const { return MAX_BUCKET_COUNT; } void clear() noexcept { m_mod = 1; } private: static constexpr double REHASH_SIZE_MULTIPLICATION_FACTOR = 1.0 * GrowthFactor::num / GrowthFactor::den; static const std::size_t MAX_BUCKET_COUNT = std::size_t(double(std::numeric_limits<std::size_t>::max() / REHASH_SIZE_MULTIPLICATION_FACTOR)); static_assert(REHASH_SIZE_MULTIPLICATION_FACTOR >= 1.1, "Growth factor should be >= 1.1."); std::size_t m_mod; }; namespace detail { #if SIZE_MAX >= ULLONG_MAX #define TSL_HH_NB_PRIMES 51 #elif SIZE_MAX >= ULONG_MAX #define TSL_HH_NB_PRIMES 40 #else #define TSL_HH_NB_PRIMES 23 #endif static constexpr const std::array<std::size_t, TSL_HH_NB_PRIMES> PRIMES = {{1u, 5u, 17u, 29u, 37u, 53u, 67u, 79u, 97u, 131u, 193u, 257u, 389u, 521u, 769u, 1031u, 1543u, 2053u, 3079u, 6151u, 12289u, 24593u, 49157u, #if SIZE_MAX >= ULONG_MAX 98317ul, 196613ul, 393241ul, 786433ul, 1572869ul, 3145739ul, 6291469ul, 12582917ul, 25165843ul, 50331653ul, 100663319ul, 201326611ul, 402653189ul, 805306457ul, 1610612741ul, 3221225473ul, 4294967291ul, #endif #if SIZE_MAX >= ULLONG_MAX 6442450939ull, 12884901893ull, 25769803751ull, 51539607551ull, 103079215111ull, 206158430209ull, 412316860441ull, 824633720831ull, 1649267441651ull, 3298534883309ull, 6597069766657ull, #endif }}; template<unsigned int IPrime> static constexpr std::size_t mod(std::size_t hash) { return hash % PRIMES[IPrime]; } static constexpr const std::array<std::size_t (*)(std::size_t), TSL_HH_NB_PRIMES> MOD_PRIME = { {&mod<0>, &mod<1>, &mod<2>, &mod<3>, &mod<4>, &mod<5>, &mod<6>, &mod<7>, &mod<8>, &mod<9>, &mod<10>, &mod<11>, &mod<12>, &mod<13>, &mod<14>, &mod<15>, &mod<16>, &mod<17>, &mod<18>, &mod<19>, &mod<20>, &mod<21>, &mod<22>, #if SIZE_MAX >= ULONG_MAX &mod<23>, &mod<24>, &mod<25>, &mod<26>, &mod<27>, &mod<28>, &mod<29>, &mod<30>, &mod<31>, &mod<32>, &mod<33>, &mod<34>, &mod<35>, &mod<36>, &mod<37>, &mod<38>, &mod<39>, #endif #if SIZE_MAX >= ULLONG_MAX &mod<40>, &mod<41>, &mod<42>, &mod<43>, &mod<44>, &mod<45>, &mod<46>, &mod<47>, &mod<48>, &mod<49>, &mod<50>, #endif }}; } // namespace detail class prime_growth_policy { public: explicit prime_growth_policy(std::size_t &min_bucket_count_in_out) { auto it_prime = std::lower_bound(detail::PRIMES.begin(), detail::PRIMES.end(), min_bucket_count_in_out); if (it_prime == detail::PRIMES.end()) { TSL_HH_THROW_OR_TERMINATE(std::length_error, "The hash table exceeds its maximum size."); } m_iprime = static_cast<unsigned int>( std::distance(detail::PRIMES.begin(), it_prime)); if (min_bucket_count_in_out > 0) { min_bucket_count_in_out = *it_prime; } else { min_bucket_count_in_out = 0; } } std::size_t bucket_for_hash(std::size_t hash) const noexcept { return detail::MOD_PRIME[m_iprime](hash); } std::size_t next_bucket_count() const { if (m_iprime + 1 >= detail::PRIMES.size()) { TSL_HH_THROW_OR_TERMINATE(std::length_error, "The hash table exceeds its maximum size."); } return detail::PRIMES[m_iprime + 1]; } std::size_t max_bucket_count() const { return detail::PRIMES.back(); } void clear() noexcept { m_iprime = 0; } private: unsigned int m_iprime; static_assert(std::numeric_limits<decltype(m_iprime)>::max() >= detail::PRIMES.size(), "The type of m_iprime is not big enough."); }; } // namespace hh } // namespace tsl #endif #if (defined(__GNUC__) && (__GNUC__ == 4) && (__GNUC_MINOR__ < 9)) #define TSL_HH_NO_RANGE_ERASE_WITH_CONST_ITERATOR #endif namespace tsl { namespace detail_hopscotch_hash { template<typename T> struct make_void { using type = void; }; template<typename T, typename = void> struct has_is_transparent : std::false_type { }; template<typename T> struct has_is_transparent<T, typename make_void<typename T::is_transparent>::type> : std::true_type { }; template<typename T, typename = void> struct has_key_compare : std::false_type { }; template<typename T> struct has_key_compare<T, typename make_void<typename T::key_compare>::type> : std::true_type { }; template<typename U> struct is_power_of_two_policy : std::false_type { }; template<std::size_t GrowthFactor> struct is_power_of_two_policy<tsl::hh::power_of_two_growth_policy<GrowthFactor>> : std::true_type { }; template<typename T, typename U> static T numeric_cast(U value, const char *error_message = "numeric_cast() failed.") { T ret = static_cast<T>(value); if (static_cast<U>(ret) != value) { TSL_HH_THROW_OR_TERMINATE(std::runtime_error, error_message); } const bool is_same_signedness = (std::is_unsigned<T>::value && std::is_unsigned<U>::value) || (std::is_signed<T>::value && std::is_signed<U>::value); if (!is_same_signedness && (ret < T{}) != (value < U{})) { TSL_HH_THROW_OR_TERMINATE(std::runtime_error, error_message); } return ret; } static const std::size_t SMALLEST_TYPE_MAX_BITS_SUPPORTED = 64; template<unsigned int MinBits, typename Enable = void> class smallest_type_for_min_bits { }; template<unsigned int MinBits> class smallest_type_for_min_bits<MinBits, typename std::enable_if<(MinBits > 0) && (MinBits <= 8)>::type> { public: using type = std::uint_least8_t; }; template<unsigned int MinBits> class smallest_type_for_min_bits<MinBits, typename std::enable_if<(MinBits > 8) && (MinBits <= 16)>::type> { public: using type = std::uint_least16_t; }; template<unsigned int MinBits> class smallest_type_for_min_bits<MinBits, typename std::enable_if<(MinBits > 16) && (MinBits <= 32)>::type> { public: using type = std::uint_least32_t; }; template<unsigned int MinBits> class smallest_type_for_min_bits<MinBits, typename std::enable_if<(MinBits > 32) && (MinBits <= 64)>::type> { public: using type = std::uint_least64_t; }; static const std::size_t NB_RESERVED_BITS_IN_NEIGHBORHOOD = 2; using truncated_hash_type = std::uint_least32_t; template<bool StoreHash> class hopscotch_bucket_hash { public: bool bucket_hash_equal(std::size_t /*hash*/) const noexcept { return true; } truncated_hash_type truncated_bucket_hash() const noexcept { return 0; } protected: void copy_hash(const hopscotch_bucket_hash &) noexcept {} void set_hash(truncated_hash_type /*hash*/) noexcept {} }; template<> class hopscotch_bucket_hash<true> { public: bool bucket_hash_equal(std::size_t hash) const noexcept { return m_hash == truncated_hash_type(hash); } truncated_hash_type truncated_bucket_hash() const noexcept { return m_hash; } protected: void copy_hash(const hopscotch_bucket_hash &bucket) noexcept { m_hash = bucket.m_hash; } void set_hash(truncated_hash_type hash) noexcept { m_hash = hash; } private: truncated_hash_type m_hash; }; template<typename ValueType, unsigned int NeighborhoodSize, bool StoreHash> class hopscotch_bucket : public hopscotch_bucket_hash<StoreHash> { private: static const std::size_t MIN_NEIGHBORHOOD_SIZE = 4; static const std::size_t MAX_NEIGHBORHOOD_SIZE = SMALLEST_TYPE_MAX_BITS_SUPPORTED - NB_RESERVED_BITS_IN_NEIGHBORHOOD; static_assert(NeighborhoodSize >= 4, "NeighborhoodSize should be >= 4."); static_assert(MIN_NEIGHBORHOOD_SIZE == 4, ""); static_assert(NeighborhoodSize <= 62, "NeighborhoodSize should be <= 62."); static_assert(MAX_NEIGHBORHOOD_SIZE == 62, ""); static_assert(!StoreHash || NeighborhoodSize <= 30, "NeighborhoodSize should be <= 30 if StoreHash is true."); static_assert(MAX_NEIGHBORHOOD_SIZE - 32 == 30, ""); using bucket_hash = hopscotch_bucket_hash<StoreHash>; public: using value_type = ValueType; using neighborhood_bitmap = typename smallest_type_for_min_bits<NeighborhoodSize + NB_RESERVED_BITS_IN_NEIGHBORHOOD>::type; hopscotch_bucket() noexcept: bucket_hash(), m_neighborhood_infos(0) { tsl_hh_assert(empty()); } hopscotch_bucket(const hopscotch_bucket &bucket) noexcept(std::is_nothrow_copy_constructible<value_type>::value): bucket_hash(bucket), m_neighborhood_infos(0) { if (!bucket.empty()) { ::new(static_cast<void *>(std::addressof(m_value))) value_type(bucket.value()); } m_neighborhood_infos = bucket.m_neighborhood_infos; } hopscotch_bucket(hopscotch_bucket &&bucket) noexcept(std::is_nothrow_move_constructible<value_type>::value): bucket_hash(std::move(bucket)), m_neighborhood_infos(0) { if (!bucket.empty()) { ::new(static_cast<void *>(std::addressof(m_value))) value_type(std::move(bucket.value())); } m_neighborhood_infos = bucket.m_neighborhood_infos; } hopscotch_bucket &operator=(const hopscotch_bucket &bucket) noexcept(std::is_nothrow_copy_constructible<value_type>::value) { if (this != &bucket) { remove_value(); bucket_hash::operator=(bucket); if (!bucket.empty()) { ::new(static_cast<void *>(std::addressof(m_value))) value_type(bucket.value()); } m_neighborhood_infos = bucket.m_neighborhood_infos; } return *this; } hopscotch_bucket &operator=(hopscotch_bucket &&) = delete; ~hopscotch_bucket() noexcept { if (!empty()) { destroy_value(); } } neighborhood_bitmap neighborhood_infos() const noexcept { return neighborhood_bitmap(m_neighborhood_infos >> NB_RESERVED_BITS_IN_NEIGHBORHOOD); } void set_overflow(bool has_overflow) noexcept { if (has_overflow) { m_neighborhood_infos = neighborhood_bitmap(m_neighborhood_infos | 2); } else { m_neighborhood_infos = neighborhood_bitmap(m_neighborhood_infos & ~2); } } bool has_overflow() const noexcept { return (m_neighborhood_infos & 2) != 0; } bool empty() const noexcept { return (m_neighborhood_infos & 1) == 0; } void toggle_neighbor_presence(std::size_t ineighbor) noexcept { tsl_hh_assert(ineighbor <= NeighborhoodSize); m_neighborhood_infos = neighborhood_bitmap(m_neighborhood_infos ^ (1ull << (ineighbor + NB_RESERVED_BITS_IN_NEIGHBORHOOD))); } bool check_neighbor_presence(std::size_t ineighbor) const noexcept { tsl_hh_assert(ineighbor <= NeighborhoodSize); if (((m_neighborhood_infos >> (ineighbor + NB_RESERVED_BITS_IN_NEIGHBORHOOD)) & 1) == 1) { return true; } return false; } value_type &value() noexcept { tsl_hh_assert(!empty()); #if defined(__cplusplus) && __cplusplus >= 201703L return *std::launder(reinterpret_cast<value_type *>(std::addressof(m_value))); #else return *reinterpret_cast<value_type*>(std::addressof(m_value)); #endif } const value_type &value() const noexcept { tsl_hh_assert(!empty()); #if defined(__cplusplus) && __cplusplus >= 201703L return *std::launder(reinterpret_cast<const value_type *>(std::addressof(m_value))); #else return *reinterpret_cast<const value_type*>(std::addressof(m_value)); #endif } template<typename... Args> void set_value_of_empty_bucket(truncated_hash_type hash, Args &&... value_type_args) { tsl_hh_assert(empty()); ::new(static_cast<void *>(std::addressof(m_value))) value_type(std::forward<Args>(value_type_args)...); set_empty(false); this->set_hash(hash); } void swap_value_into_empty_bucket(hopscotch_bucket &empty_bucket) { tsl_hh_assert(empty_bucket.empty()); if (!empty()) { ::new(static_cast<void *>(std::addressof(empty_bucket.m_value))) value_type(std::move(value())); empty_bucket.copy_hash(*this); empty_bucket.set_empty(false); destroy_value(); set_empty(true); } } void remove_value() noexcept { if (!empty()) { destroy_value(); set_empty(true); } } void clear() noexcept { if (!empty()) { destroy_value(); } m_neighborhood_infos = 0; tsl_hh_assert(empty()); } static truncated_hash_type truncate_hash(std::size_t hash) noexcept { return truncated_hash_type(hash); } private: void set_empty(bool is_empty) noexcept { if (is_empty) { m_neighborhood_infos = neighborhood_bitmap(m_neighborhood_infos & ~1); } else { m_neighborhood_infos = neighborhood_bitmap(m_neighborhood_infos | 1); } } void destroy_value() noexcept { tsl_hh_assert(!empty()); value().~value_type(); } private: neighborhood_bitmap m_neighborhood_infos; alignas(value_type) unsigned char m_value[sizeof(value_type)]; }; template<class ValueType, class KeySelect, class ValueSelect, class Hash, class KeyEqual, class Allocator, unsigned int NeighborhoodSize, bool StoreHash, class GrowthPolicy, class OverflowContainer> class hopscotch_hash : private Hash, private KeyEqual, private GrowthPolicy { private: template<typename U> using has_mapped_type = typename std::integral_constant<bool, !std::is_same<U, void>::value>; static_assert(noexcept(std::declval<GrowthPolicy>().bucket_for_hash(std::size_t(0))), "GrowthPolicy::bucket_for_hash must be noexcept."); static_assert(noexcept(std::declval<GrowthPolicy>().clear()), "GrowthPolicy::clear must be noexcept."); public: template<bool IsConst> class hopscotch_iterator; using key_type = typename KeySelect::key_type; using value_type = ValueType; using size_type = std::size_t; using difference_type = std::ptrdiff_t; using hasher = Hash; using key_equal = KeyEqual; using allocator_type = Allocator; using reference = value_type &; using const_reference = const value_type &; using pointer = value_type *; using const_pointer = const value_type *; using iterator = hopscotch_iterator<false>; using const_iterator = hopscotch_iterator<true>; private: using hopscotch_bucket = tsl::detail_hopscotch_hash::hopscotch_bucket<ValueType, NeighborhoodSize, StoreHash>; using neighborhood_bitmap = typename hopscotch_bucket::neighborhood_bitmap; using buckets_allocator = typename std::allocator_traits<allocator_type>::template rebind_alloc<hopscotch_bucket>; using buckets_container_type = std::vector<hopscotch_bucket, buckets_allocator>; using overflow_container_type = OverflowContainer; static_assert(std::is_same<typename overflow_container_type::value_type, ValueType>::value, "OverflowContainer should have ValueType as type."); static_assert(std::is_same<typename overflow_container_type::allocator_type, Allocator>::value, "Invalid allocator, not the same type as the value_type."); using iterator_buckets = typename buckets_container_type::iterator; using const_iterator_buckets = typename buckets_container_type::const_iterator; using iterator_overflow = typename overflow_container_type::iterator; using const_iterator_overflow = typename overflow_container_type::const_iterator; public: template<bool IsConst> class hopscotch_iterator { friend class hopscotch_hash; private: using iterator_bucket = typename std::conditional<IsConst, typename hopscotch_hash::const_iterator_buckets, typename hopscotch_hash::iterator_buckets>::type; using iterator_overflow = typename std::conditional<IsConst, typename hopscotch_hash::const_iterator_overflow, typename hopscotch_hash::iterator_overflow>::type; hopscotch_iterator(iterator_bucket buckets_iterator, iterator_bucket buckets_end_iterator, iterator_overflow overflow_iterator) noexcept: m_buckets_iterator(buckets_iterator), m_buckets_end_iterator(buckets_end_iterator), m_overflow_iterator(overflow_iterator) {} public: using iterator_category = std::forward_iterator_tag; using value_type = const typename hopscotch_hash::value_type; using difference_type = std::ptrdiff_t; using reference = value_type &; using pointer = value_type *; hopscotch_iterator() noexcept {} template<bool TIsConst = IsConst, typename std::enable_if<TIsConst>::type * = nullptr> hopscotch_iterator(const hopscotch_iterator<!TIsConst> &other) noexcept : m_buckets_iterator(other.m_buckets_iterator), m_buckets_end_iterator(other.m_buckets_end_iterator), m_overflow_iterator(other.m_overflow_iterator) {} hopscotch_iterator(const hopscotch_iterator &other) = default; hopscotch_iterator(hopscotch_iterator &&other) = default; hopscotch_iterator &operator=(const hopscotch_iterator &other) = default; hopscotch_iterator &operator=(hopscotch_iterator &&other) = default; const typename hopscotch_hash::key_type &key() const { if (m_buckets_iterator != m_buckets_end_iterator) { return KeySelect()(m_buckets_iterator->value()); } return KeySelect()(*m_overflow_iterator); } template<class U = ValueSelect, typename std::enable_if<has_mapped_type<U>::value>::type * = nullptr> typename std::conditional<IsConst, const typename U::value_type &, typename U::value_type &>::type value() const { if (m_buckets_iterator != m_buckets_end_iterator) { return U()(m_buckets_iterator->value()); } return U()(*m_overflow_iterator); } reference operator*() const { if (m_buckets_iterator != m_buckets_end_iterator) { return m_buckets_iterator->value(); } return *m_overflow_iterator; } pointer operator->() const { if (m_buckets_iterator != m_buckets_end_iterator) { return std::addressof(m_buckets_iterator->value()); } return std::addressof(*m_overflow_iterator); } hopscotch_iterator &operator++() { if (m_buckets_iterator == m_buckets_end_iterator) { ++m_overflow_iterator; return *this; } do { ++m_buckets_iterator; } while (m_buckets_iterator != m_buckets_end_iterator && m_buckets_iterator->empty()); return *this; } hopscotch_iterator operator++(int) { hopscotch_iterator tmp(*this); ++*this; return tmp; } friend bool operator==(const hopscotch_iterator &lhs, const hopscotch_iterator &rhs) { return lhs.m_buckets_iterator == rhs.m_buckets_iterator && lhs.m_overflow_iterator == rhs.m_overflow_iterator; } friend bool operator!=(const hopscotch_iterator &lhs, const hopscotch_iterator &rhs) { return !(lhs == rhs); } private: iterator_bucket m_buckets_iterator; iterator_bucket m_buckets_end_iterator; iterator_overflow m_overflow_iterator; }; public: template<class OC = OverflowContainer, typename std::enable_if<!has_key_compare<OC>::value>::type * = nullptr> hopscotch_hash(size_type bucket_count, const Hash &hash, const KeyEqual &equal, const Allocator &alloc, float max_load_factor) : Hash(hash), KeyEqual(equal), GrowthPolicy(bucket_count), m_buckets_data(alloc), m_overflow_elements(alloc), m_buckets(static_empty_bucket_ptr()), m_nb_elements(0) { if (bucket_count > max_bucket_count()) { TSL_HH_THROW_OR_TERMINATE(std::length_error, "The map exceeds its maximum size."); } if (bucket_count > 0) { static_assert(NeighborhoodSize - 1 > 0, ""); m_buckets_data.resize(bucket_count + NeighborhoodSize - 1); m_buckets = m_buckets_data.data(); } this->max_load_factor(max_load_factor); static_assert(std::is_nothrow_move_constructible<value_type>::value || std::is_copy_constructible<value_type>::value, "value_type must be either copy constructible or nothrow " "move constructible."); } template<class OC = OverflowContainer, typename std::enable_if<has_key_compare<OC>::value>::type * = nullptr> hopscotch_hash(size_type bucket_count, const Hash &hash, const KeyEqual &equal, const Allocator &alloc, float max_load_factor, const typename OC::key_compare &comp) : Hash(hash), KeyEqual(equal), GrowthPolicy(bucket_count), m_buckets_data(alloc), m_overflow_elements(comp, alloc), m_buckets(static_empty_bucket_ptr()), m_nb_elements(0) { if (bucket_count > max_bucket_count()) { TSL_HH_THROW_OR_TERMINATE(std::length_error, "The map exceeds its maximum size."); } if (bucket_count > 0) { static_assert(NeighborhoodSize - 1 > 0, ""); m_buckets_data.resize(bucket_count + NeighborhoodSize - 1); m_buckets = m_buckets_data.data(); } this->max_load_factor(max_load_factor); static_assert(std::is_nothrow_move_constructible<value_type>::value || std::is_copy_constructible<value_type>::value, "value_type must be either copy constructible or nothrow " "move constructible."); } hopscotch_hash(const hopscotch_hash &other) : hopscotch_hash(other, other.get_allocator()) {} hopscotch_hash(const hopscotch_hash &other, const Allocator &alloc) : Hash(other), KeyEqual(other), GrowthPolicy(other), m_buckets_data(other.m_buckets_data, alloc), m_overflow_elements(other.m_overflow_elements), m_buckets(m_buckets_data.empty() ? static_empty_bucket_ptr() : m_buckets_data.data()), m_nb_elements(other.m_nb_elements), m_min_load_threshold_rehash(other.m_min_load_threshold_rehash), m_max_load_threshold_rehash(other.m_max_load_threshold_rehash), m_max_load_factor(other.m_max_load_factor) {} hopscotch_hash(hopscotch_hash &&other) noexcept(std::is_nothrow_move_constructible<Hash>::value && std::is_nothrow_move_constructible<KeyEqual>::value && std::is_nothrow_move_constructible<GrowthPolicy>::value && std::is_nothrow_move_constructible<buckets_container_type>::value && std::is_nothrow_move_constructible<overflow_container_type>::value): Hash(std::move(static_cast<Hash &>(other))), KeyEqual(std::move(static_cast<KeyEqual &>(other))), GrowthPolicy(std::move(static_cast<GrowthPolicy &>(other))), m_buckets_data(std::move(other.m_buckets_data)), m_overflow_elements(std::move(other.m_overflow_elements)), m_buckets(m_buckets_data.empty() ? static_empty_bucket_ptr() : m_buckets_data.data()), m_nb_elements(other.m_nb_elements), m_min_load_threshold_rehash(other.m_min_load_threshold_rehash), m_max_load_threshold_rehash(other.m_max_load_threshold_rehash), m_max_load_factor(other.m_max_load_factor) { other.GrowthPolicy::clear(); other.m_buckets_data.clear(); other.m_overflow_elements.clear(); other.m_buckets = static_empty_bucket_ptr(); other.m_nb_elements = 0; other.m_min_load_threshold_rehash = 0; other.m_max_load_threshold_rehash = 0; } hopscotch_hash &operator=(const hopscotch_hash &other) { if (&other != this) { Hash::operator=(other); KeyEqual::operator=(other); GrowthPolicy::operator=(other); m_buckets_data = other.m_buckets_data; m_overflow_elements = other.m_overflow_elements; m_buckets = m_buckets_data.empty() ? static_empty_bucket_ptr() : m_buckets_data.data(); m_nb_elements = other.m_nb_elements; m_min_load_threshold_rehash = other.m_min_load_threshold_rehash; m_max_load_threshold_rehash = other.m_max_load_threshold_rehash; m_max_load_factor = other.m_max_load_factor; } return *this; } hopscotch_hash &operator=(hopscotch_hash &&other) { other.swap(*this); other.clear(); return *this; } allocator_type get_allocator() const { return m_buckets_data.get_allocator(); } iterator begin() noexcept { auto begin = m_buckets_data.begin(); while (begin != m_buckets_data.end() && begin->empty()) { ++begin; } return iterator(begin, m_buckets_data.end(), m_overflow_elements.begin()); } const_iterator begin() const noexcept { return cbegin(); } const_iterator cbegin() const noexcept { auto begin = m_buckets_data.cbegin(); while (begin != m_buckets_data.cend() && begin->empty()) { ++begin; } return const_iterator(begin, m_buckets_data.cend(), m_overflow_elements.cbegin()); } iterator end() noexcept { return iterator(m_buckets_data.end(), m_buckets_data.end(), m_overflow_elements.end()); } const_iterator end() const noexcept { return cend(); } const_iterator cend() const noexcept { return const_iterator(m_buckets_data.cend(), m_buckets_data.cend(), m_overflow_elements.cend()); } bool empty() const noexcept { return m_nb_elements == 0; } size_type size() const noexcept { return m_nb_elements; } size_type max_size() const noexcept { return m_buckets_data.max_size(); } void clear() noexcept { for (auto &bucket: m_buckets_data) { bucket.clear(); } m_overflow_elements.clear(); m_nb_elements = 0; } std::pair<iterator, bool> insert(const value_type &value) { return insert_impl(value); } template<class P, typename std::enable_if<std::is_constructible<value_type, P &&>::value>::type * = nullptr> std::pair<iterator, bool> insert(P &&value) { return insert_impl(value_type(std::forward<P>(value))); } std::pair<iterator, bool> insert(value_type &&value) { return insert_impl(std::move(value)); } iterator insert(const_iterator hint, const value_type &value) { if (hint != cend() && compare_keys(KeySelect()(*hint), KeySelect()(value))) { return mutable_iterator(hint); } return insert(value).first; } template<class P, typename std::enable_if<std::is_constructible<value_type, P &&>::value>::type * = nullptr> iterator insert(const_iterator hint, P &&value) { return emplace_hint(hint, std::forward<P>(value)); } iterator insert(const_iterator hint, value_type &&value) { if (hint != cend() && compare_keys(KeySelect()(*hint), KeySelect()(value))) { return mutable_iterator(hint); } return insert(std::move(value)).first; } template<class InputIt> void insert(InputIt first, InputIt last) { if (std::is_base_of<std::forward_iterator_tag, typename std::iterator_traits<InputIt>::iterator_category>::value) { const auto nb_elements_insert = std::distance(first, last); const std::size_t nb_elements_in_buckets = m_nb_elements - m_overflow_elements.size(); const std::size_t nb_free_buckets = m_max_load_threshold_rehash - nb_elements_in_buckets; tsl_hh_assert(m_nb_elements >= m_overflow_elements.size()); tsl_hh_assert(m_max_load_threshold_rehash >= nb_elements_in_buckets); if (nb_elements_insert > 0 && nb_free_buckets < std::size_t(nb_elements_insert)) { reserve(nb_elements_in_buckets + std::size_t(nb_elements_insert)); } } for (; first != last; ++first) { insert(*first); } } template<class M> std::pair<iterator, bool> insert_or_assign(const key_type &k, M &&obj) { return insert_or_assign_impl(k, std::forward<M>(obj)); } template<class M> std::pair<iterator, bool> insert_or_assign(key_type &&k, M &&obj) { return insert_or_assign_impl(std::move(k), std::forward<M>(obj)); } template<class M> iterator insert_or_assign(const_iterator hint, const key_type &k, M &&obj) { if (hint != cend() && compare_keys(KeySelect()(*hint), k)) { auto it = mutable_iterator(hint); it.value() = std::forward<M>(obj); return it; } return insert_or_assign(k, std::forward<M>(obj)).first; } template<class M> iterator insert_or_assign(const_iterator hint, key_type &&k, M &&obj) { if (hint != cend() && compare_keys(KeySelect()(*hint), k)) { auto it = mutable_iterator(hint); it.value() = std::forward<M>(obj); return it; } return insert_or_assign(std::move(k), std::forward<M>(obj)).first; } template<class... Args> std::pair<iterator, bool> emplace(Args &&... args) { return insert(value_type(std::forward<Args>(args)...)); } template<class... Args> iterator emplace_hint(const_iterator hint, Args &&... args) { return insert(hint, value_type(std::forward<Args>(args)...)); } template<class... Args> std::pair<iterator, bool> try_emplace(const key_type &k, Args &&... args) { return try_emplace_impl(k, std::forward<Args>(args)...); } template<class... Args> std::pair<iterator, bool> try_emplace(key_type &&k, Args &&... args) { return try_emplace_impl(std::move(k), std::forward<Args>(args)...); } template<class... Args> iterator try_emplace(const_iterator hint, const key_type &k, Args &&... args) { if (hint != cend() && compare_keys(KeySelect()(*hint), k)) { return mutable_iterator(hint); } return try_emplace(k, std::forward<Args>(args)...).first; } template<class... Args> iterator try_emplace(const_iterator hint, key_type &&k, Args &&... args) { if (hint != cend() && compare_keys(KeySelect()(*hint), k)) { return mutable_iterator(hint); } return try_emplace(std::move(k), std::forward<Args>(args)...).first; } iterator erase(iterator pos) { return erase(const_iterator(pos)); } iterator erase(const_iterator pos) { const std::size_t ibucket_for_hash = bucket_for_hash(hash_key(pos.key())); if (pos.m_buckets_iterator != pos.m_buckets_end_iterator) { auto it_bucket = m_buckets_data.begin() + std::distance(m_buckets_data.cbegin(), pos.m_buckets_iterator); erase_from_bucket(*it_bucket, ibucket_for_hash); return ++iterator(it_bucket, m_buckets_data.end(), m_overflow_elements.begin()); } else { auto it_next_overflow = erase_from_overflow(pos.m_overflow_iterator, ibucket_for_hash); return iterator(m_buckets_data.end(), m_buckets_data.end(), it_next_overflow); } } iterator erase(const_iterator first, const_iterator last) { if (first == last) { return mutable_iterator(first); } auto to_delete = erase(first); while (to_delete != last) { to_delete = erase(to_delete); } return to_delete; } template<class K> size_type erase(const K &key) { return erase(key, hash_key(key)); } template<class K> size_type erase(const K &key, std::size_t hash) { const std::size_t ibucket_for_hash = bucket_for_hash(hash); hopscotch_bucket *bucket_found = find_in_buckets(key, hash, m_buckets + ibucket_for_hash); if (bucket_found != nullptr) { erase_from_bucket(*bucket_found, ibucket_for_hash); return 1; } if (m_buckets[ibucket_for_hash].has_overflow()) { auto it_overflow = find_in_overflow(key); if (it_overflow != m_overflow_elements.end()) { erase_from_overflow(it_overflow, ibucket_for_hash); return 1; } } return 0; } void swap(hopscotch_hash &other) { using std::swap; swap(static_cast<Hash &>(*this), static_cast<Hash &>(other)); swap(static_cast<KeyEqual &>(*this), static_cast<KeyEqual &>(other)); swap(static_cast<GrowthPolicy &>(*this), static_cast<GrowthPolicy &>(other)); swap(m_buckets_data, other.m_buckets_data); swap(m_overflow_elements, other.m_overflow_elements); swap(m_buckets, other.m_buckets); swap(m_nb_elements, other.m_nb_elements); swap(m_min_load_threshold_rehash, other.m_min_load_threshold_rehash); swap(m_max_load_threshold_rehash, other.m_max_load_threshold_rehash); swap(m_max_load_factor, other.m_max_load_factor); } template<class K, class U = ValueSelect, typename std::enable_if<has_mapped_type<U>::value>::type * = nullptr> typename U::value_type &at(const K &key) { return at(key, hash_key(key)); } template<class K, class U = ValueSelect, typename std::enable_if<has_mapped_type<U>::value>::type * = nullptr> typename U::value_type &at(const K &key, std::size_t hash) { return const_cast<typename U::value_type &>( static_cast<const hopscotch_hash *>(this)->at(key, hash)); } template<class K, class U = ValueSelect, typename std::enable_if<has_mapped_type<U>::value>::type * = nullptr> const typename U::value_type &at(const K &key) const { return at(key, hash_key(key)); } template<class K, class U = ValueSelect, typename std::enable_if<has_mapped_type<U>::value>::type * = nullptr> const typename U::value_type &at(const K &key, std::size_t hash) const { using T = typename U::value_type; const T *value = find_value_impl(key, hash, m_buckets + bucket_for_hash(hash)); if (value == nullptr) { TSL_HH_THROW_OR_TERMINATE(std::out_of_range, "Couldn't find key."); } else { return *value; } } template<class K, class U = ValueSelect, typename std::enable_if<has_mapped_type<U>::value>::type * = nullptr> typename U::value_type &operator[](K &&key) { using T = typename U::value_type; const std::size_t hash = hash_key(key); const std::size_t ibucket_for_hash = bucket_for_hash(hash); T *value = find_value_impl(key, hash, m_buckets + ibucket_for_hash); if (value != nullptr) { return *value; } else { return insert_value(ibucket_for_hash, hash, std::piecewise_construct, std::forward_as_tuple(std::forward<K>(key)), std::forward_as_tuple()).first.value(); } } template<class K> size_type count(const K &key) const { return count(key, hash_key(key)); } template<class K> size_type count(const K &key, std::size_t hash) const { return count_impl(key, hash, m_buckets + bucket_for_hash(hash)); } template<class K> iterator find(const K &key) { return find(key, hash_key(key)); } template<class K> iterator find(const K &key, std::size_t hash) { return find_impl(key, hash, m_buckets + bucket_for_hash(hash)); } template<class K> const_iterator find(const K &key) const { return find(key, hash_key(key)); } template<class K> const_iterator find(const K &key, std::size_t hash) const { return find_impl(key, hash, m_buckets + bucket_for_hash(hash)); } template<class K> bool contains(const K &key) const { return contains(key, hash_key(key)); } template<class K> bool contains(const K &key, std::size_t hash) const { return count(key, hash) != 0; } template<class K> std::pair<iterator, iterator> equal_range(const K &key) { return equal_range(key, hash_key(key)); } template<class K> std::pair<iterator, iterator> equal_range(const K &key, std::size_t hash) { iterator it = find(key, hash); return std::make_pair(it, (it == end()) ? it : std::next(it)); } template<class K> std::pair<const_iterator, const_iterator> equal_range(const K &key) const { return equal_range(key, hash_key(key)); } template<class K> std::pair<const_iterator, const_iterator> equal_range(const K &key, std::size_t hash) const { const_iterator it = find(key, hash); return std::make_pair(it, (it == cend()) ? it : std::next(it)); } size_type bucket_count() const { if (m_buckets_data.empty()) { return 0; } return m_buckets_data.size() - NeighborhoodSize + 1; } size_type max_bucket_count() const { const std::size_t max_bucket_count = std::min(GrowthPolicy::max_bucket_count(), m_buckets_data.max_size()); return max_bucket_count - NeighborhoodSize + 1; } float load_factor() const { if (bucket_count() == 0) { return 0; } return float(m_nb_elements) / float(bucket_count()); } float max_load_factor() const { return m_max_load_factor; } void max_load_factor(float ml) { m_max_load_factor = std::max(0.1f, std::min(ml, 0.95f)); m_min_load_threshold_rehash = size_type(float(bucket_count()) * MIN_LOAD_FACTOR_FOR_REHASH); m_max_load_threshold_rehash = size_type(float(bucket_count()) * m_max_load_factor); } void rehash(size_type count_) { count_ = std::max(count_, size_type(std::ceil(float(size()) / max_load_factor()))); rehash_impl(count_); } void reserve(size_type count_) { rehash(size_type(std::ceil(float(count_) / max_load_factor()))); } hasher hash_function() const { return static_cast<const Hash &>(*this); } key_equal key_eq() const { return static_cast<const KeyEqual &>(*this); } iterator mutable_iterator(const_iterator pos) { if (pos.m_buckets_iterator != pos.m_buckets_end_iterator) { auto it = m_buckets_data.begin() + std::distance(m_buckets_data.cbegin(), pos.m_buckets_iterator); return iterator(it, m_buckets_data.end(), m_overflow_elements.begin()); } else { auto it = mutable_overflow_iterator(pos.m_overflow_iterator); return iterator(m_buckets_data.end(), m_buckets_data.end(), it); } } size_type overflow_size() const noexcept { return m_overflow_elements.size(); } template<class U = OverflowContainer, typename std::enable_if<has_key_compare<U>::value>::type * = nullptr> typename U::key_compare key_comp() const { return m_overflow_elements.key_comp(); } private: template<class K> std::size_t hash_key(const K &key) const { return Hash::operator()(key); } template<class K1, class K2> bool compare_keys(const K1 &key1, const K2 &key2) const { return KeyEqual::operator()(key1, key2); } std::size_t bucket_for_hash(std::size_t hash) const { const std::size_t bucket = GrowthPolicy::bucket_for_hash(hash); tsl_hh_assert(bucket < m_buckets_data.size() || (bucket == 0 && m_buckets_data.empty())); return bucket; } template<typename U = value_type, typename std::enable_if<std::is_nothrow_move_constructible<U>::value>::type * = nullptr> void rehash_impl(size_type count_) { hopscotch_hash new_map = new_hopscotch_hash(count_); if (!m_overflow_elements.empty()) { new_map.m_overflow_elements.swap(m_overflow_elements); new_map.m_nb_elements += new_map.m_overflow_elements.size(); for (const value_type &value: new_map.m_overflow_elements) { const std::size_t ibucket_for_hash = new_map.bucket_for_hash(new_map.hash_key(KeySelect()(value))); new_map.m_buckets[ibucket_for_hash].set_overflow(true); } } #ifndef TSL_HH_NO_EXCEPTIONS try { #endif const bool use_stored_hash = USE_STORED_HASH_ON_REHASH(new_map.bucket_count()); for (auto it_bucket = m_buckets_data.begin(); it_bucket != m_buckets_data.end(); ++it_bucket) { if (it_bucket->empty()) { continue; } const std::size_t hash = use_stored_hash ? it_bucket->truncated_bucket_hash() : new_map.hash_key(KeySelect()(it_bucket->value())); const std::size_t ibucket_for_hash = new_map.bucket_for_hash(hash); new_map.insert_value(ibucket_for_hash, hash, std::move(it_bucket->value())); erase_from_bucket(*it_bucket, bucket_for_hash(hash)); } #ifndef TSL_HH_NO_EXCEPTIONS } catch (...) { m_overflow_elements.swap(new_map.m_overflow_elements); const bool use_stored_hash = USE_STORED_HASH_ON_REHASH(new_map.bucket_count()); for (auto it_bucket = new_map.m_buckets_data.begin(); it_bucket != new_map.m_buckets_data.end(); ++it_bucket) { if (it_bucket->empty()) { continue; } const std::size_t hash = use_stored_hash ? it_bucket->truncated_bucket_hash() : hash_key(KeySelect()(it_bucket->value())); const std::size_t ibucket_for_hash = bucket_for_hash(hash); insert_value(ibucket_for_hash, hash, std::move(it_bucket->value())); } throw; } #endif new_map.swap(*this); } template<typename U = value_type, typename std::enable_if<std::is_copy_constructible<U>::value && !std::is_nothrow_move_constructible<U>::value>::type * = nullptr> void rehash_impl(size_type count_) { hopscotch_hash new_map = new_hopscotch_hash(count_); const bool use_stored_hash = USE_STORED_HASH_ON_REHASH(new_map.bucket_count()); for (const hopscotch_bucket &bucket: m_buckets_data) { if (bucket.empty()) { continue; } const std::size_t hash = use_stored_hash ? bucket.truncated_bucket_hash() : new_map.hash_key(KeySelect()(bucket.value())); const std::size_t ibucket_for_hash = new_map.bucket_for_hash(hash); new_map.insert_value(ibucket_for_hash, hash, bucket.value()); } for (const value_type &value: m_overflow_elements) { const std::size_t hash = new_map.hash_key(KeySelect()(value)); const std::size_t ibucket_for_hash = new_map.bucket_for_hash(hash); new_map.insert_value(ibucket_for_hash, hash, value); } new_map.swap(*this); } #ifdef TSL_HH_NO_RANGE_ERASE_WITH_CONST_ITERATOR iterator_overflow mutable_overflow_iterator(const_iterator_overflow it) { return std::next(m_overflow_elements.begin(), std::distance(m_overflow_elements.cbegin(), it)); } #else iterator_overflow mutable_overflow_iterator(const_iterator_overflow it) { return m_overflow_elements.erase(it, it); } #endif iterator_overflow erase_from_overflow(const_iterator_overflow pos, std::size_t ibucket_for_hash) { #ifdef TSL_HH_NO_RANGE_ERASE_WITH_CONST_ITERATOR auto it_next = m_overflow_elements.erase(mutable_overflow_iterator(pos)); #else auto it_next = m_overflow_elements.erase(pos); #endif m_nb_elements--; tsl_hh_assert(m_buckets[ibucket_for_hash].has_overflow()); for (const value_type &value: m_overflow_elements) { const std::size_t bucket_for_value = bucket_for_hash(hash_key(KeySelect()(value))); if (bucket_for_value == ibucket_for_hash) { return it_next; } } m_buckets[ibucket_for_hash].set_overflow(false); return it_next; } void erase_from_bucket(hopscotch_bucket &bucket_for_value, std::size_t ibucket_for_hash) noexcept { const std::size_t ibucket_for_value = std::distance(m_buckets_data.data(), &bucket_for_value); tsl_hh_assert(ibucket_for_value >= ibucket_for_hash); bucket_for_value.remove_value(); m_buckets[ibucket_for_hash].toggle_neighbor_presence(ibucket_for_value - ibucket_for_hash); m_nb_elements--; } template<class K, class M> std::pair<iterator, bool> insert_or_assign_impl(K &&key, M &&obj) { auto it = try_emplace_impl(std::forward<K>(key), std::forward<M>(obj)); if (!it.second) { it.first.value() = std::forward<M>(obj); } return it; } template<typename P, class... Args> std::pair<iterator, bool> try_emplace_impl(P &&key, Args &&... args_value) { const std::size_t hash = hash_key(key); const std::size_t ibucket_for_hash = bucket_for_hash(hash); auto it_find = find_impl(key, hash, m_buckets + ibucket_for_hash); if (it_find != end()) { return std::make_pair(it_find, false); } return insert_value(ibucket_for_hash, hash, std::piecewise_construct, std::forward_as_tuple(std::forward<P>(key)), std::forward_as_tuple(std::forward<Args>(args_value)...)); } template<typename P> std::pair<iterator, bool> insert_impl(P &&value) { const std::size_t hash = hash_key(KeySelect()(value)); const std::size_t ibucket_for_hash = bucket_for_hash(hash); auto it_find = find_impl(KeySelect()(value), hash, m_buckets + ibucket_for_hash); if (it_find != end()) { return std::make_pair(it_find, false); } return insert_value(ibucket_for_hash, hash, std::forward<P>(value)); } template<typename... Args> std::pair<iterator, bool> insert_value(std::size_t ibucket_for_hash, std::size_t hash, Args &&... value_type_args) { if ((m_nb_elements - m_overflow_elements.size()) >= m_max_load_threshold_rehash) { rehash(GrowthPolicy::next_bucket_count()); ibucket_for_hash = bucket_for_hash(hash); } std::size_t ibucket_empty = find_empty_bucket(ibucket_for_hash); if (ibucket_empty < m_buckets_data.size()) { do { tsl_hh_assert(ibucket_empty >= ibucket_for_hash); if (ibucket_empty - ibucket_for_hash < NeighborhoodSize) { auto it = insert_in_bucket(ibucket_empty, ibucket_for_hash, hash, std::forward<Args>(value_type_args)...); return std::make_pair(iterator(it, m_buckets_data.end(), m_overflow_elements.begin()), true); } } while (swap_empty_bucket_closer(ibucket_empty)); } if (size() < m_min_load_threshold_rehash || !will_neighborhood_change_on_rehash(ibucket_for_hash)) { auto it = insert_in_overflow(ibucket_for_hash, std::forward<Args>(value_type_args)...); return std::make_pair(iterator(m_buckets_data.end(), m_buckets_data.end(), it), true); } rehash(GrowthPolicy::next_bucket_count()); ibucket_for_hash = bucket_for_hash(hash); return insert_value(ibucket_for_hash, hash, std::forward<Args>(value_type_args)...); } bool will_neighborhood_change_on_rehash(size_t ibucket_neighborhood_check) const { std::size_t expand_bucket_count = GrowthPolicy::next_bucket_count(); GrowthPolicy expand_growth_policy(expand_bucket_count); const bool use_stored_hash = USE_STORED_HASH_ON_REHASH(expand_bucket_count); for (size_t ibucket = ibucket_neighborhood_check; ibucket < m_buckets_data.size() && (ibucket - ibucket_neighborhood_check) < NeighborhoodSize; ++ibucket) { tsl_hh_assert(!m_buckets[ibucket].empty()); const size_t hash = use_stored_hash ? m_buckets[ibucket].truncated_bucket_hash() : hash_key(KeySelect()(m_buckets[ibucket].value())); if (bucket_for_hash(hash) != expand_growth_policy.bucket_for_hash(hash)) { return true; } } return false; } std::size_t find_empty_bucket(std::size_t ibucket_start) const { const std::size_t limit = std::min(ibucket_start + MAX_PROBES_FOR_EMPTY_BUCKET, m_buckets_data.size()); for (; ibucket_start < limit; ibucket_start++) { if (m_buckets[ibucket_start].empty()) { return ibucket_start; } } return m_buckets_data.size(); } template<typename... Args> iterator_buckets insert_in_bucket(std::size_t ibucket_empty, std::size_t ibucket_for_hash, std::size_t hash, Args &&... value_type_args) { tsl_hh_assert(ibucket_empty >= ibucket_for_hash); tsl_hh_assert(m_buckets[ibucket_empty].empty()); m_buckets[ibucket_empty].set_value_of_empty_bucket(hopscotch_bucket::truncate_hash(hash), std::forward<Args>(value_type_args)...); tsl_hh_assert(!m_buckets[ibucket_for_hash].empty()); m_buckets[ibucket_for_hash].toggle_neighbor_presence(ibucket_empty - ibucket_for_hash); m_nb_elements++; return m_buckets_data.begin() + ibucket_empty; } template<class... Args, class U = OverflowContainer, typename std::enable_if<!has_key_compare<U>::value>::type * = nullptr> iterator_overflow insert_in_overflow(std::size_t ibucket_for_hash, Args &&... value_type_args) { auto it = m_overflow_elements.emplace(m_overflow_elements.end(), std::forward<Args>(value_type_args)...); m_buckets[ibucket_for_hash].set_overflow(true); m_nb_elements++; return it; } template<class... Args, class U = OverflowContainer, typename std::enable_if<has_key_compare<U>::value>::type * = nullptr> iterator_overflow insert_in_overflow(std::size_t ibucket_for_hash, Args &&... value_type_args) { auto it = m_overflow_elements.emplace(std::forward<Args>(value_type_args)...).first; m_buckets[ibucket_for_hash].set_overflow(true); m_nb_elements++; return it; } bool swap_empty_bucket_closer(std::size_t &ibucket_empty_in_out) { tsl_hh_assert(ibucket_empty_in_out >= NeighborhoodSize); const std::size_t neighborhood_start = ibucket_empty_in_out - NeighborhoodSize + 1; for (std::size_t to_check = neighborhood_start; to_check < ibucket_empty_in_out; to_check++) { neighborhood_bitmap neighborhood_infos = m_buckets[to_check].neighborhood_infos(); std::size_t to_swap = to_check; while (neighborhood_infos != 0 && to_swap < ibucket_empty_in_out) { if ((neighborhood_infos & 1) == 1) { tsl_hh_assert(m_buckets[ibucket_empty_in_out].empty()); tsl_hh_assert(!m_buckets[to_swap].empty()); m_buckets[to_swap].swap_value_into_empty_bucket(m_buckets[ibucket_empty_in_out]); tsl_hh_assert(!m_buckets[to_check].check_neighbor_presence(ibucket_empty_in_out - to_check)); tsl_hh_assert(m_buckets[to_check].check_neighbor_presence(to_swap - to_check)); m_buckets[to_check].toggle_neighbor_presence(ibucket_empty_in_out - to_check); m_buckets[to_check].toggle_neighbor_presence(to_swap - to_check); ibucket_empty_in_out = to_swap; return true; } to_swap++; neighborhood_infos = neighborhood_bitmap(neighborhood_infos >> 1); } } return false; } template<class K, class U = ValueSelect, typename std::enable_if<has_mapped_type<U>::value>::type * = nullptr> typename U::value_type *find_value_impl(const K &key, std::size_t hash, hopscotch_bucket *bucket_for_hash) { return const_cast<typename U::value_type *>( static_cast<const hopscotch_hash *>(this)->find_value_impl(key, hash, bucket_for_hash)); } template<class K, class U = ValueSelect, typename std::enable_if<has_mapped_type<U>::value>::type * = nullptr> const typename U::value_type *find_value_impl(const K &key, std::size_t hash, const hopscotch_bucket *bucket_for_hash) const { const hopscotch_bucket *bucket_found = find_in_buckets(key, hash, bucket_for_hash); if (bucket_found != nullptr) { return std::addressof(ValueSelect()(bucket_found->value())); } if (bucket_for_hash->has_overflow()) { auto it_overflow = find_in_overflow(key); if (it_overflow != m_overflow_elements.end()) { return std::addressof(ValueSelect()(*it_overflow)); } } return nullptr; } template<class K> size_type count_impl(const K &key, std::size_t hash, const hopscotch_bucket *bucket_for_hash) const { if (find_in_buckets(key, hash, bucket_for_hash) != nullptr) { return 1; } else if (bucket_for_hash->has_overflow() && find_in_overflow(key) != m_overflow_elements.cend()) { return 1; } else { return 0; } } template<class K> iterator find_impl(const K &key, std::size_t hash, hopscotch_bucket *bucket_for_hash) { hopscotch_bucket *bucket_found = find_in_buckets(key, hash, bucket_for_hash); if (bucket_found != nullptr) { return iterator(m_buckets_data.begin() + std::distance(m_buckets_data.data(), bucket_found), m_buckets_data.end(), m_overflow_elements.begin()); } if (!bucket_for_hash->has_overflow()) { return end(); } return iterator(m_buckets_data.end(), m_buckets_data.end(), find_in_overflow(key)); } template<class K> const_iterator find_impl(const K &key, std::size_t hash, const hopscotch_bucket *bucket_for_hash) const { const hopscotch_bucket *bucket_found = find_in_buckets(key, hash, bucket_for_hash); if (bucket_found != nullptr) { return const_iterator(m_buckets_data.cbegin() + std::distance(m_buckets_data.data(), bucket_found), m_buckets_data.cend(), m_overflow_elements.cbegin()); } if (!bucket_for_hash->has_overflow()) { return cend(); } return const_iterator(m_buckets_data.cend(), m_buckets_data.cend(), find_in_overflow(key)); } template<class K> hopscotch_bucket *find_in_buckets(const K &key, std::size_t hash, hopscotch_bucket *bucket_for_hash) { const hopscotch_bucket *bucket_found = static_cast<const hopscotch_hash *>(this)->find_in_buckets(key, hash, bucket_for_hash); return const_cast<hopscotch_bucket *>(bucket_found); } template<class K> const hopscotch_bucket *find_in_buckets(const K &key, std::size_t hash, const hopscotch_bucket *bucket_for_hash) const { (void) hash; neighborhood_bitmap neighborhood_infos = bucket_for_hash->neighborhood_infos(); while (neighborhood_infos != 0) { if ((neighborhood_infos & 1) == 1) { if ((!StoreHash || bucket_for_hash->bucket_hash_equal(hash)) && compare_keys(KeySelect()(bucket_for_hash->value()), key)) { return bucket_for_hash; } } ++bucket_for_hash; neighborhood_infos = neighborhood_bitmap(neighborhood_infos >> 1); } return nullptr; } template<class K, class U = OverflowContainer, typename std::enable_if<!has_key_compare<U>::value>::type * = nullptr> iterator_overflow find_in_overflow(const K &key) { return std::find_if(m_overflow_elements.begin(), m_overflow_elements.end(), [&](const value_type &value) { return compare_keys(key, KeySelect()(value)); }); } template<class K, class U = OverflowContainer, typename std::enable_if<!has_key_compare<U>::value>::type * = nullptr> const_iterator_overflow find_in_overflow(const K &key) const { return std::find_if(m_overflow_elements.cbegin(), m_overflow_elements.cend(), [&](const value_type &value) { return compare_keys(key, KeySelect()(value)); }); } template<class K, class U = OverflowContainer, typename std::enable_if<has_key_compare<U>::value>::type * = nullptr> iterator_overflow find_in_overflow(const K &key) { return m_overflow_elements.find(key); } template<class K, class U = OverflowContainer, typename std::enable_if<has_key_compare<U>::value>::type * = nullptr> const_iterator_overflow find_in_overflow(const K &key) const { return m_overflow_elements.find(key); } template<class U = OverflowContainer, typename std::enable_if<!has_key_compare<U>::value>::type * = nullptr> hopscotch_hash new_hopscotch_hash(size_type bucket_count) { return hopscotch_hash(bucket_count, static_cast<Hash &>(*this), static_cast<KeyEqual &>(*this), get_allocator(), m_max_load_factor); } template<class U = OverflowContainer, typename std::enable_if<has_key_compare<U>::value>::type * = nullptr> hopscotch_hash new_hopscotch_hash(size_type bucket_count) { return hopscotch_hash(bucket_count, static_cast<Hash &>(*this), static_cast<KeyEqual &>(*this), get_allocator(), m_max_load_factor, m_overflow_elements.key_comp()); } public: static const size_type DEFAULT_INIT_BUCKETS_SIZE = 0; static constexpr float DEFAULT_MAX_LOAD_FACTOR = (NeighborhoodSize <= 30) ? 0.8f : 0.9f; private: static const std::size_t MAX_PROBES_FOR_EMPTY_BUCKET = 12 * NeighborhoodSize; static constexpr float MIN_LOAD_FACTOR_FOR_REHASH = 0.1f; template<class T = size_type, typename std::enable_if<std::is_same<T, truncated_hash_type>::value>::type * = nullptr> static bool USE_STORED_HASH_ON_REHASH(size_type /*bucket_count*/) { return StoreHash; } template<class T = size_type, typename std::enable_if<!std::is_same<T, truncated_hash_type>::value>::type * = nullptr> static bool USE_STORED_HASH_ON_REHASH(size_type bucket_count) { (void) bucket_count; if (StoreHash && is_power_of_two_policy<GrowthPolicy>::value) { tsl_hh_assert(bucket_count > 0); return (bucket_count - 1) <= std::numeric_limits<truncated_hash_type>::max(); } else { return false; } } hopscotch_bucket *static_empty_bucket_ptr() { static hopscotch_bucket empty_bucket; return &empty_bucket; } private: buckets_container_type m_buckets_data; overflow_container_type m_overflow_elements; hopscotch_bucket *m_buckets; size_type m_nb_elements; size_type m_min_load_threshold_rehash; size_type m_max_load_threshold_rehash; float m_max_load_factor; }; } // end namespace detail_hopscotch_hash } // end namespace tsl #endif namespace tsl { template<class Key, class T, class Hash = std::hash<Key>, class KeyEqual = std::equal_to<Key>, class Allocator = std::allocator<std::pair<Key, T>>, unsigned int NeighborhoodSize = 62, bool StoreHash = false, class GrowthPolicy = tsl::hh::power_of_two_growth_policy<2>> class hopscotch_map { private: template<typename U> using has_is_transparent = tsl::detail_hopscotch_hash::has_is_transparent<U>; class KeySelect { public: using key_type = Key; const key_type &operator()(const std::pair<Key, T> &key_value) const { return key_value.first; } key_type &operator()(std::pair<Key, T> &key_value) { return key_value.first; } }; class ValueSelect { public: using value_type = T; const value_type &operator()(const std::pair<Key, T> &key_value) const { return key_value.second; } value_type &operator()(std::pair<Key, T> &key_value) { return key_value.second; } }; using overflow_container_type = std::list<std::pair<Key, T>, Allocator>; using ht = detail_hopscotch_hash::hopscotch_hash<std::pair<Key, T>, KeySelect, ValueSelect, Hash, KeyEqual, Allocator, NeighborhoodSize, StoreHash, GrowthPolicy, overflow_container_type>; public: using key_type = typename ht::key_type; using mapped_type = T; using value_type = typename ht::value_type; using size_type = typename ht::size_type; using difference_type = typename ht::difference_type; using hasher = typename ht::hasher; using key_equal = typename ht::key_equal; using allocator_type = typename ht::allocator_type; using reference = typename ht::reference; using const_reference = typename ht::const_reference; using pointer = typename ht::pointer; using const_pointer = typename ht::const_pointer; using iterator = typename ht::iterator; using const_iterator = typename ht::const_iterator; hopscotch_map() : hopscotch_map(ht::DEFAULT_INIT_BUCKETS_SIZE) {} explicit hopscotch_map(size_type bucket_count, const Hash &hash = Hash(), const KeyEqual &equal = KeyEqual(), const Allocator &alloc = Allocator()) : m_ht(bucket_count, hash, equal, alloc, ht::DEFAULT_MAX_LOAD_FACTOR) {} hopscotch_map(size_type bucket_count, const Allocator &alloc) : hopscotch_map(bucket_count, Hash(), KeyEqual(), alloc) {} hopscotch_map(size_type bucket_count, const Hash &hash, const Allocator &alloc) : hopscotch_map(bucket_count, hash, KeyEqual(), alloc) {} explicit hopscotch_map(const Allocator &alloc) : hopscotch_map(ht::DEFAULT_INIT_BUCKETS_SIZE, alloc) {} hopscotch_map(const hopscotch_map &other, const Allocator &alloc) : m_ht(other.m_ht, alloc) {} template<class InputIt> hopscotch_map(InputIt first, InputIt last, size_type bucket_count = ht::DEFAULT_INIT_BUCKETS_SIZE, const Hash &hash = Hash(), const KeyEqual &equal = KeyEqual(), const Allocator &alloc = Allocator()) : hopscotch_map(bucket_count, hash, equal, alloc) { insert(first, last); } template<class InputIt> hopscotch_map(InputIt first, InputIt last, size_type bucket_count, const Allocator &alloc) : hopscotch_map(first, last, bucket_count, Hash(), KeyEqual(), alloc) {} template<class InputIt> hopscotch_map(InputIt first, InputIt last, size_type bucket_count, const Hash &hash, const Allocator &alloc) : hopscotch_map(first, last, bucket_count, hash, KeyEqual(), alloc) {} hopscotch_map(std::initializer_list<value_type> init, size_type bucket_count = ht::DEFAULT_INIT_BUCKETS_SIZE, const Hash &hash = Hash(), const KeyEqual &equal = KeyEqual(), const Allocator &alloc = Allocator()) : hopscotch_map(init.begin(), init.end(), bucket_count, hash, equal, alloc) {} hopscotch_map(std::initializer_list<value_type> init, size_type bucket_count, const Allocator &alloc) : hopscotch_map(init.begin(), init.end(), bucket_count, Hash(), KeyEqual(), alloc) {} hopscotch_map(std::initializer_list<value_type> init, size_type bucket_count, const Hash &hash, const Allocator &alloc) : hopscotch_map(init.begin(), init.end(), bucket_count, hash, KeyEqual(), alloc) {} hopscotch_map &operator=(std::initializer_list<value_type> ilist) { m_ht.clear(); m_ht.reserve(ilist.size()); m_ht.insert(ilist.begin(), ilist.end()); return *this; } allocator_type get_allocator() const { return m_ht.get_allocator(); } iterator begin() noexcept { return m_ht.begin(); } const_iterator begin() const noexcept { return m_ht.begin(); } const_iterator cbegin() const noexcept { return m_ht.cbegin(); } iterator end() noexcept { return m_ht.end(); } const_iterator end() const noexcept { return m_ht.end(); } const_iterator cend() const noexcept { return m_ht.cend(); } bool empty() const noexcept { return m_ht.empty(); } size_type size() const noexcept { return m_ht.size(); } size_type max_size() const noexcept { return m_ht.max_size(); } void clear() noexcept { m_ht.clear(); } std::pair<iterator, bool> insert(const value_type &value) { return m_ht.insert(value); } template<class P, typename std::enable_if<std::is_constructible<value_type, P &&>::value>::type * = nullptr> std::pair<iterator, bool> insert(P &&value) { return m_ht.insert(std::forward<P>(value)); } std::pair<iterator, bool> insert(value_type &&value) { return m_ht.insert(std::move(value)); } iterator insert(const_iterator hint, const value_type &value) { return m_ht.insert(hint, value); } template<class P, typename std::enable_if<std::is_constructible<value_type, P &&>::value>::type * = nullptr> iterator insert(const_iterator hint, P &&value) { return m_ht.insert(hint, std::forward<P>(value)); } iterator insert(const_iterator hint, value_type &&value) { return m_ht.insert(hint, std::move(value)); } template<class InputIt> void insert(InputIt first, InputIt last) { m_ht.insert(first, last); } void insert(std::initializer_list<value_type> ilist) { m_ht.insert(ilist.begin(), ilist.end()); } template<class M> std::pair<iterator, bool> insert_or_assign(const key_type &k, M &&obj) { return m_ht.insert_or_assign(k, std::forward<M>(obj)); } template<class M> std::pair<iterator, bool> insert_or_assign(key_type &&k, M &&obj) { return m_ht.insert_or_assign(std::move(k), std::forward<M>(obj)); } template<class M> iterator insert_or_assign(const_iterator hint, const key_type &k, M &&obj) { return m_ht.insert_or_assign(hint, k, std::forward<M>(obj)); } template<class M> iterator insert_or_assign(const_iterator hint, key_type &&k, M &&obj) { return m_ht.insert_or_assign(hint, std::move(k), std::forward<M>(obj)); } template<class... Args> std::pair<iterator, bool> emplace(Args &&... args) { return m_ht.emplace(std::forward<Args>(args)...); } template<class... Args> iterator emplace_hint(const_iterator hint, Args &&... args) { return m_ht.emplace_hint(hint, std::forward<Args>(args)...); } template<class... Args> std::pair<iterator, bool> try_emplace(const key_type &k, Args &&... args) { return m_ht.try_emplace(k, std::forward<Args>(args)...); } template<class... Args> std::pair<iterator, bool> try_emplace(key_type &&k, Args &&... args) { return m_ht.try_emplace(std::move(k), std::forward<Args>(args)...); } template<class... Args> iterator try_emplace(const_iterator hint, const key_type &k, Args &&... args) { return m_ht.try_emplace(hint, k, std::forward<Args>(args)...); } template<class... Args> iterator try_emplace(const_iterator hint, key_type &&k, Args &&... args) { return m_ht.try_emplace(hint, std::move(k), std::forward<Args>(args)...); } iterator erase(iterator pos) { return m_ht.erase(pos); } iterator erase(const_iterator pos) { return m_ht.erase(pos); } iterator erase(const_iterator first, const_iterator last) { return m_ht.erase(first, last); } size_type erase(const key_type &key) { return m_ht.erase(key); } size_type erase(const key_type &key, std::size_t precalculated_hash) { return m_ht.erase(key, precalculated_hash); } template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type * = nullptr> size_type erase(const K &key) { return m_ht.erase(key); } template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type * = nullptr> size_type erase(const K &key, std::size_t precalculated_hash) { return m_ht.erase(key, precalculated_hash); } void swap(hopscotch_map &other) { other.m_ht.swap(m_ht); } T &at(const Key &key) { return m_ht.at(key); } T &at(const Key &key, std::size_t precalculated_hash) { return m_ht.at(key, precalculated_hash); } const T &at(const Key &key) const { return m_ht.at(key); } const T &at(const Key &key, std::size_t precalculated_hash) const { return m_ht.at(key, precalculated_hash); } template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type * = nullptr> T &at(const K &key) { return m_ht.at(key); } template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type * = nullptr> T &at(const K &key, std::size_t precalculated_hash) { return m_ht.at(key, precalculated_hash); } template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type * = nullptr> const T &at(const K &key) const { return m_ht.at(key); } template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type * = nullptr> const T &at(const K &key, std::size_t precalculated_hash) const { return m_ht.at(key, precalculated_hash); } T &operator[](const Key &key) { return m_ht[key]; } T &operator[](Key &&key) { return m_ht[std::move(key)]; } size_type count(const Key &key) const { return m_ht.count(key); } size_type count(const Key &key, std::size_t precalculated_hash) const { return m_ht.count(key, precalculated_hash); } template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type * = nullptr> size_type count(const K &key) const { return m_ht.count(key); } template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type * = nullptr> size_type count(const K &key, std::size_t precalculated_hash) const { return m_ht.count(key, precalculated_hash); } iterator find(const Key &key) { return m_ht.find(key); } iterator find(const Key &key, std::size_t precalculated_hash) { return m_ht.find(key, precalculated_hash); } const_iterator find(const Key &key) const { return m_ht.find(key); } const_iterator find(const Key &key, std::size_t precalculated_hash) const { return m_ht.find(key, precalculated_hash); } template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type * = nullptr> iterator find(const K &key) { return m_ht.find(key); } template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type * = nullptr> iterator find(const K &key, std::size_t precalculated_hash) { return m_ht.find(key, precalculated_hash); } template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type * = nullptr> const_iterator find(const K &key) const { return m_ht.find(key); } template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type * = nullptr> const_iterator find(const K &key, std::size_t precalculated_hash) const { return m_ht.find(key, precalculated_hash); } bool contains(const Key &key) const { return m_ht.contains(key); } bool contains(const Key &key, std::size_t precalculated_hash) const { return m_ht.contains(key, precalculated_hash); } template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type * = nullptr> bool contains(const K &key) const { return m_ht.contains(key); } template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type * = nullptr> bool contains(const K &key, std::size_t precalculated_hash) const { return m_ht.contains(key, precalculated_hash); } std::pair<iterator, iterator> equal_range(const Key &key) { return m_ht.equal_range(key); } std::pair<iterator, iterator> equal_range(const Key &key, std::size_t precalculated_hash) { return m_ht.equal_range(key, precalculated_hash); } std::pair<const_iterator, const_iterator> equal_range(const Key &key) const { return m_ht.equal_range(key); } std::pair<const_iterator, const_iterator> equal_range(const Key &key, std::size_t precalculated_hash) const { return m_ht.equal_range(key, precalculated_hash); } template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type * = nullptr> std::pair<iterator, iterator> equal_range(const K &key) { return m_ht.equal_range(key); } template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type * = nullptr> std::pair<iterator, iterator> equal_range(const K &key, std::size_t precalculated_hash) { return m_ht.equal_range(key, precalculated_hash); } template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type * = nullptr> std::pair<const_iterator, const_iterator> equal_range(const K &key) const { return m_ht.equal_range(key); } template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type * = nullptr> std::pair<const_iterator, const_iterator> equal_range(const K &key, std::size_t precalculated_hash) const { return m_ht.equal_range(key, precalculated_hash); } size_type bucket_count() const { return m_ht.bucket_count(); } size_type max_bucket_count() const { return m_ht.max_bucket_count(); } float load_factor() const { return m_ht.load_factor(); } float max_load_factor() const { return m_ht.max_load_factor(); } void max_load_factor(float ml) { m_ht.max_load_factor(ml); } void rehash(size_type count_) { m_ht.rehash(count_); } void reserve(size_type count_) { m_ht.reserve(count_); } hasher hash_function() const { return m_ht.hash_function(); } key_equal key_eq() const { return m_ht.key_eq(); } iterator mutable_iterator(const_iterator pos) { return m_ht.mutable_iterator(pos); } size_type overflow_size() const noexcept { return m_ht.overflow_size(); } friend bool operator==(const hopscotch_map &lhs, const hopscotch_map &rhs) { if (lhs.size() != rhs.size()) { return false; } for (const auto &element_lhs: lhs) { const auto it_element_rhs = rhs.find(element_lhs.first); if (it_element_rhs == rhs.cend() || element_lhs.second != it_element_rhs->second) { return false; } } return true; } friend bool operator!=(const hopscotch_map &lhs, const hopscotch_map &rhs) { return !operator==(lhs, rhs); } friend void swap(hopscotch_map &lhs, hopscotch_map &rhs) { lhs.swap(rhs); } private: ht m_ht; }; template<class Key, class T, class Hash = std::hash<Key>, class KeyEqual = std::equal_to<Key>, class Allocator = std::allocator<std::pair<Key, T>>, unsigned int NeighborhoodSize = 62, bool StoreHash = false> using hopscotch_pg_map = hopscotch_map<Key, T, Hash, KeyEqual, Allocator, NeighborhoodSize, StoreHash, tsl::hh::prime_growth_policy>; } // end namespace tsl #endif using namespace std; #include <iostream> #define int long long int my_abs(int x) {if (x < 0) {return -x;} else {return x;}} signed main() { cin.tie(nullptr); ios::sync_with_stdio(false); vector<vector<int>> C(2000, vector<int>(30)); for (int k = 1; k <= 2; k++) C[0][k] = 0; for (int n = 0; n <= 1000; n++) C[n][0] = 1; for (int n = 1; n <= 1000; n++) for (int k = 1; k <= 2; k++) C[n][k] = C[n - 1][k - 1] + C[n - 1][k]; int n; cin >> n; vector<int> seq(n); for (int i = 0; i < n; ++i) { cin >> seq[i]; } vector<int> prev; prev.push_back(0); for (int i = 0; i <= n; ++i) { prev.push_back(prev[i] + seq[i]); } vector<int> b; for (int i = 0; i < n; ++i) { for (int j = i; j < n; ++j) { if (i == j) { b.push_back(seq[i]); } else { b.push_back(prev[j + 1] - prev[i]); } } } vector<int> P; vector<int> N; for (auto el: b) { if (el >= 0) { P.push_back(el); } else { N.push_back(el); } } std::sort(P.begin(), P.end()); std::sort(N.begin(), N.end(), greater<>()); tsl::hopscotch_map<int, pair<int, int>> HTP; tsl::hopscotch_map<int, pair<int, int>> HTN; for (int i = 0; i < P.size(); ++i) { auto cached = HTP.find(P[i]); if (cached == HTP.end()) {HTP[P[i]].second = 1;HTP[P[i]].first = -1;} else {HTP[P[i]].second++;} } for (int i = 0; i < N.size(); ++i) { auto cached = HTN.find(N[i]); if (cached == HTN.end()) {HTN[N[i]].second = 1;HTN[N[i]].first = -1;} else {HTN[N[i]].second++;} } P.erase(unique(P.begin(), P.end()), P.end()); N.erase(unique(N.begin(), N.end()), N.end()); for (int i = 0; i < P.size(); ++i) { if (HTP[P[i]].first == -1) { HTP[P[i]].first = i; } } for (int i = 0; i < N.size(); ++i) { if (HTN[N[i]].first == -1) { HTN[N[i]].first = i; } } long long res = 0; for (int i = 0; i < N.size(); ++i) { int a = N[i]; for (int j = 0; j < P.size(); ++j) { int b = P[j]; int c = -(a + b); if (c < b) { break; } if (HTP[c].first != -1) { if (b == c && HTP[c].second < 2) { continue; } int to_add; if (c >= 0) { if (b == c) { to_add = HTN[a].second * C[HTP[b].second][2]; } else { to_add = HTN[a].second * HTP[b].second * HTP[c].second; } res += to_add; } else { if (a == c) { to_add = HTP[b].second * C[HTN[a].second][2]; } else { to_add = HTN[a].second * HTP[b].second * HTN[c].second; } res += to_add; } } } } for (int i = 0; i < P.size(); ++i) { int a = P[i]; for (int j = 0; j < N.size(); ++j) { int b = N[j]; int c = -(a + b); if (c > b) { break; } if (HTN[c].first != -1) { if (b == c && HTN[c].second < 2) { continue; } int to_add; if (c >= 0) { if (a == c) { to_add = HTN[b].second * C[HTP[a].second][2]; } else { to_add = HTP[a].second * HTN[b].second * HTP[c].second; } res += to_add; } else { if (b == c) { to_add = HTP[a].second * C[HTN[b].second][2]; } else { to_add = HTP[a].second * HTN[b].second * HTN[c].second; } res += to_add; } } } } cout << res + (HTP[0].second * (HTP[0].second - 2) * (HTP[0].second - 1)) / 6 << "\n"; }
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 | #ifndef TSL_HOPSCOTCH_MAP_H #define TSL_HOPSCOTCH_MAP_H #include <algorithm> #include <cstddef> #include <functional> #include <initializer_list> #include <list> #include <memory> #include <type_traits> #include <utility> #ifndef TSL_HOPSCOTCH_HASH_H #define TSL_HOPSCOTCH_HASH_H #include <algorithm> #include <cassert> #include <cmath> #include <cstddef> #include <cstdint> #include <functional> #include <initializer_list> #include <iterator> #include <limits> #include <memory> #include <new> #include <stdexcept> #include <tuple> #include <type_traits> #include <utility> #include <vector> #ifndef TSL_HOPSCOTCH_GROWTH_POLICY_H #define TSL_HOPSCOTCH_GROWTH_POLICY_H #include <algorithm> #include <array> #include <climits> #include <cmath> #include <cstddef> #include <cstdint> #include <iterator> #include <limits> #include <ratio> #include <stdexcept> #ifdef TSL_DEBUG #define tsl_hh_assert(expr) assert(expr) #else #define tsl_hh_assert(expr) (static_cast<void>(0)) #endif #if (defined(__cpp_exceptions) || defined(__EXCEPTIONS) || \ (defined(_MSC_VER) && defined(_CPPUNWIND))) && \ !defined(TSL_NO_EXCEPTIONS) #define TSL_HH_THROW_OR_TERMINATE(ex, msg) throw ex(msg) #else #define TSL_HH_NO_EXCEPTIONS #include <exception> #ifdef TSL_DEBUG #include <iostream> #define TSL_HH_THROW_OR_TERMINATE(ex, msg) \ do { \ std::cerr << msg << std::endl; \ std::terminate(); \ } while (0) #else #define TSL_HH_THROW_OR_TERMINATE(ex, msg) std::terminate() #endif #endif namespace tsl { namespace hh { template<std::size_t GrowthFactor> class power_of_two_growth_policy { public: explicit power_of_two_growth_policy(std::size_t &min_bucket_count_in_out) { if (min_bucket_count_in_out > max_bucket_count()) { TSL_HH_THROW_OR_TERMINATE(std::length_error, "The hash table exceeds its maximum size."); } if (min_bucket_count_in_out > 0) { min_bucket_count_in_out = round_up_to_power_of_two(min_bucket_count_in_out); m_mask = min_bucket_count_in_out - 1; } else { m_mask = 0; } } std::size_t bucket_for_hash(std::size_t hash) const noexcept { return hash & m_mask; } std::size_t next_bucket_count() const { if ((m_mask + 1) > max_bucket_count() / GrowthFactor) { TSL_HH_THROW_OR_TERMINATE(std::length_error, "The hash table exceeds its maximum size."); } return (m_mask + 1) * GrowthFactor; } std::size_t max_bucket_count() const { return (std::numeric_limits<std::size_t>::max() / 2) + 1; } void clear() noexcept { m_mask = 0; } private: static std::size_t round_up_to_power_of_two(std::size_t value) { if (is_power_of_two(value)) { return value; } if (value == 0) { return 1; } --value; for (std::size_t i = 1; i < sizeof(std::size_t) * CHAR_BIT; i *= 2) { value |= value >> i; } return value + 1; } static constexpr bool is_power_of_two(std::size_t value) { return value != 0 && (value & (value - 1)) == 0; } private: static_assert(is_power_of_two(GrowthFactor) && GrowthFactor >= 2, "GrowthFactor must be a power of two >= 2."); std::size_t m_mask; }; template<class GrowthFactor = std::ratio<3, 2>> class mod_growth_policy { public: explicit mod_growth_policy(std::size_t &min_bucket_count_in_out) { if (min_bucket_count_in_out > max_bucket_count()) { TSL_HH_THROW_OR_TERMINATE(std::length_error, "The hash table exceeds its maximum size."); } if (min_bucket_count_in_out > 0) { m_mod = min_bucket_count_in_out; } else { m_mod = 1; } } std::size_t bucket_for_hash(std::size_t hash) const noexcept { return hash % m_mod; } std::size_t next_bucket_count() const { if (m_mod == max_bucket_count()) { TSL_HH_THROW_OR_TERMINATE(std::length_error, "The hash table exceeds its maximum size."); } const double next_bucket_count = std::ceil(double(m_mod) * REHASH_SIZE_MULTIPLICATION_FACTOR); if (!std::isnormal(next_bucket_count)) { TSL_HH_THROW_OR_TERMINATE(std::length_error, "The hash table exceeds its maximum size."); } if (next_bucket_count > double(max_bucket_count())) { return max_bucket_count(); } else { return std::size_t(next_bucket_count); } } std::size_t max_bucket_count() const { return MAX_BUCKET_COUNT; } void clear() noexcept { m_mod = 1; } private: static constexpr double REHASH_SIZE_MULTIPLICATION_FACTOR = 1.0 * GrowthFactor::num / GrowthFactor::den; static const std::size_t MAX_BUCKET_COUNT = std::size_t(double(std::numeric_limits<std::size_t>::max() / REHASH_SIZE_MULTIPLICATION_FACTOR)); static_assert(REHASH_SIZE_MULTIPLICATION_FACTOR >= 1.1, "Growth factor should be >= 1.1."); std::size_t m_mod; }; namespace detail { #if SIZE_MAX >= ULLONG_MAX #define TSL_HH_NB_PRIMES 51 #elif SIZE_MAX >= ULONG_MAX #define TSL_HH_NB_PRIMES 40 #else #define TSL_HH_NB_PRIMES 23 #endif static constexpr const std::array<std::size_t, TSL_HH_NB_PRIMES> PRIMES = {{1u, 5u, 17u, 29u, 37u, 53u, 67u, 79u, 97u, 131u, 193u, 257u, 389u, 521u, 769u, 1031u, 1543u, 2053u, 3079u, 6151u, 12289u, 24593u, 49157u, #if SIZE_MAX >= ULONG_MAX 98317ul, 196613ul, 393241ul, 786433ul, 1572869ul, 3145739ul, 6291469ul, 12582917ul, 25165843ul, 50331653ul, 100663319ul, 201326611ul, 402653189ul, 805306457ul, 1610612741ul, 3221225473ul, 4294967291ul, #endif #if SIZE_MAX >= ULLONG_MAX 6442450939ull, 12884901893ull, 25769803751ull, 51539607551ull, 103079215111ull, 206158430209ull, 412316860441ull, 824633720831ull, 1649267441651ull, 3298534883309ull, 6597069766657ull, #endif }}; template<unsigned int IPrime> static constexpr std::size_t mod(std::size_t hash) { return hash % PRIMES[IPrime]; } static constexpr const std::array<std::size_t (*)(std::size_t), TSL_HH_NB_PRIMES> MOD_PRIME = { {&mod<0>, &mod<1>, &mod<2>, &mod<3>, &mod<4>, &mod<5>, &mod<6>, &mod<7>, &mod<8>, &mod<9>, &mod<10>, &mod<11>, &mod<12>, &mod<13>, &mod<14>, &mod<15>, &mod<16>, &mod<17>, &mod<18>, &mod<19>, &mod<20>, &mod<21>, &mod<22>, #if SIZE_MAX >= ULONG_MAX &mod<23>, &mod<24>, &mod<25>, &mod<26>, &mod<27>, &mod<28>, &mod<29>, &mod<30>, &mod<31>, &mod<32>, &mod<33>, &mod<34>, &mod<35>, &mod<36>, &mod<37>, &mod<38>, &mod<39>, #endif #if SIZE_MAX >= ULLONG_MAX &mod<40>, &mod<41>, &mod<42>, &mod<43>, &mod<44>, &mod<45>, &mod<46>, &mod<47>, &mod<48>, &mod<49>, &mod<50>, #endif }}; } // namespace detail class prime_growth_policy { public: explicit prime_growth_policy(std::size_t &min_bucket_count_in_out) { auto it_prime = std::lower_bound(detail::PRIMES.begin(), detail::PRIMES.end(), min_bucket_count_in_out); if (it_prime == detail::PRIMES.end()) { TSL_HH_THROW_OR_TERMINATE(std::length_error, "The hash table exceeds its maximum size."); } m_iprime = static_cast<unsigned int>( std::distance(detail::PRIMES.begin(), it_prime)); if (min_bucket_count_in_out > 0) { min_bucket_count_in_out = *it_prime; } else { min_bucket_count_in_out = 0; } } std::size_t bucket_for_hash(std::size_t hash) const noexcept { return detail::MOD_PRIME[m_iprime](hash); } std::size_t next_bucket_count() const { if (m_iprime + 1 >= detail::PRIMES.size()) { TSL_HH_THROW_OR_TERMINATE(std::length_error, "The hash table exceeds its maximum size."); } return detail::PRIMES[m_iprime + 1]; } std::size_t max_bucket_count() const { return detail::PRIMES.back(); } void clear() noexcept { m_iprime = 0; } private: unsigned int m_iprime; static_assert(std::numeric_limits<decltype(m_iprime)>::max() >= detail::PRIMES.size(), "The type of m_iprime is not big enough."); }; } // namespace hh } // namespace tsl #endif #if (defined(__GNUC__) && (__GNUC__ == 4) && (__GNUC_MINOR__ < 9)) #define TSL_HH_NO_RANGE_ERASE_WITH_CONST_ITERATOR #endif namespace tsl { namespace detail_hopscotch_hash { template<typename T> struct make_void { using type = void; }; template<typename T, typename = void> struct has_is_transparent : std::false_type { }; template<typename T> struct has_is_transparent<T, typename make_void<typename T::is_transparent>::type> : std::true_type { }; template<typename T, typename = void> struct has_key_compare : std::false_type { }; template<typename T> struct has_key_compare<T, typename make_void<typename T::key_compare>::type> : std::true_type { }; template<typename U> struct is_power_of_two_policy : std::false_type { }; template<std::size_t GrowthFactor> struct is_power_of_two_policy<tsl::hh::power_of_two_growth_policy<GrowthFactor>> : std::true_type { }; template<typename T, typename U> static T numeric_cast(U value, const char *error_message = "numeric_cast() failed.") { T ret = static_cast<T>(value); if (static_cast<U>(ret) != value) { TSL_HH_THROW_OR_TERMINATE(std::runtime_error, error_message); } const bool is_same_signedness = (std::is_unsigned<T>::value && std::is_unsigned<U>::value) || (std::is_signed<T>::value && std::is_signed<U>::value); if (!is_same_signedness && (ret < T{}) != (value < U{})) { TSL_HH_THROW_OR_TERMINATE(std::runtime_error, error_message); } return ret; } static const std::size_t SMALLEST_TYPE_MAX_BITS_SUPPORTED = 64; template<unsigned int MinBits, typename Enable = void> class smallest_type_for_min_bits { }; template<unsigned int MinBits> class smallest_type_for_min_bits<MinBits, typename std::enable_if<(MinBits > 0) && (MinBits <= 8)>::type> { public: using type = std::uint_least8_t; }; template<unsigned int MinBits> class smallest_type_for_min_bits<MinBits, typename std::enable_if<(MinBits > 8) && (MinBits <= 16)>::type> { public: using type = std::uint_least16_t; }; template<unsigned int MinBits> class smallest_type_for_min_bits<MinBits, typename std::enable_if<(MinBits > 16) && (MinBits <= 32)>::type> { public: using type = std::uint_least32_t; }; template<unsigned int MinBits> class smallest_type_for_min_bits<MinBits, typename std::enable_if<(MinBits > 32) && (MinBits <= 64)>::type> { public: using type = std::uint_least64_t; }; static const std::size_t NB_RESERVED_BITS_IN_NEIGHBORHOOD = 2; using truncated_hash_type = std::uint_least32_t; template<bool StoreHash> class hopscotch_bucket_hash { public: bool bucket_hash_equal(std::size_t /*hash*/) const noexcept { return true; } truncated_hash_type truncated_bucket_hash() const noexcept { return 0; } protected: void copy_hash(const hopscotch_bucket_hash &) noexcept {} void set_hash(truncated_hash_type /*hash*/) noexcept {} }; template<> class hopscotch_bucket_hash<true> { public: bool bucket_hash_equal(std::size_t hash) const noexcept { return m_hash == truncated_hash_type(hash); } truncated_hash_type truncated_bucket_hash() const noexcept { return m_hash; } protected: void copy_hash(const hopscotch_bucket_hash &bucket) noexcept { m_hash = bucket.m_hash; } void set_hash(truncated_hash_type hash) noexcept { m_hash = hash; } private: truncated_hash_type m_hash; }; template<typename ValueType, unsigned int NeighborhoodSize, bool StoreHash> class hopscotch_bucket : public hopscotch_bucket_hash<StoreHash> { private: static const std::size_t MIN_NEIGHBORHOOD_SIZE = 4; static const std::size_t MAX_NEIGHBORHOOD_SIZE = SMALLEST_TYPE_MAX_BITS_SUPPORTED - NB_RESERVED_BITS_IN_NEIGHBORHOOD; static_assert(NeighborhoodSize >= 4, "NeighborhoodSize should be >= 4."); static_assert(MIN_NEIGHBORHOOD_SIZE == 4, ""); static_assert(NeighborhoodSize <= 62, "NeighborhoodSize should be <= 62."); static_assert(MAX_NEIGHBORHOOD_SIZE == 62, ""); static_assert(!StoreHash || NeighborhoodSize <= 30, "NeighborhoodSize should be <= 30 if StoreHash is true."); static_assert(MAX_NEIGHBORHOOD_SIZE - 32 == 30, ""); using bucket_hash = hopscotch_bucket_hash<StoreHash>; public: using value_type = ValueType; using neighborhood_bitmap = typename smallest_type_for_min_bits<NeighborhoodSize + NB_RESERVED_BITS_IN_NEIGHBORHOOD>::type; hopscotch_bucket() noexcept: bucket_hash(), m_neighborhood_infos(0) { tsl_hh_assert(empty()); } hopscotch_bucket(const hopscotch_bucket &bucket) noexcept(std::is_nothrow_copy_constructible<value_type>::value): bucket_hash(bucket), m_neighborhood_infos(0) { if (!bucket.empty()) { ::new(static_cast<void *>(std::addressof(m_value))) value_type(bucket.value()); } m_neighborhood_infos = bucket.m_neighborhood_infos; } hopscotch_bucket(hopscotch_bucket &&bucket) noexcept(std::is_nothrow_move_constructible<value_type>::value): bucket_hash(std::move(bucket)), m_neighborhood_infos(0) { if (!bucket.empty()) { ::new(static_cast<void *>(std::addressof(m_value))) value_type(std::move(bucket.value())); } m_neighborhood_infos = bucket.m_neighborhood_infos; } hopscotch_bucket &operator=(const hopscotch_bucket &bucket) noexcept(std::is_nothrow_copy_constructible<value_type>::value) { if (this != &bucket) { remove_value(); bucket_hash::operator=(bucket); if (!bucket.empty()) { ::new(static_cast<void *>(std::addressof(m_value))) value_type(bucket.value()); } m_neighborhood_infos = bucket.m_neighborhood_infos; } return *this; } hopscotch_bucket &operator=(hopscotch_bucket &&) = delete; ~hopscotch_bucket() noexcept { if (!empty()) { destroy_value(); } } neighborhood_bitmap neighborhood_infos() const noexcept { return neighborhood_bitmap(m_neighborhood_infos >> NB_RESERVED_BITS_IN_NEIGHBORHOOD); } void set_overflow(bool has_overflow) noexcept { if (has_overflow) { m_neighborhood_infos = neighborhood_bitmap(m_neighborhood_infos | 2); } else { m_neighborhood_infos = neighborhood_bitmap(m_neighborhood_infos & ~2); } } bool has_overflow() const noexcept { return (m_neighborhood_infos & 2) != 0; } bool empty() const noexcept { return (m_neighborhood_infos & 1) == 0; } void toggle_neighbor_presence(std::size_t ineighbor) noexcept { tsl_hh_assert(ineighbor <= NeighborhoodSize); m_neighborhood_infos = neighborhood_bitmap(m_neighborhood_infos ^ (1ull << (ineighbor + NB_RESERVED_BITS_IN_NEIGHBORHOOD))); } bool check_neighbor_presence(std::size_t ineighbor) const noexcept { tsl_hh_assert(ineighbor <= NeighborhoodSize); if (((m_neighborhood_infos >> (ineighbor + NB_RESERVED_BITS_IN_NEIGHBORHOOD)) & 1) == 1) { return true; } return false; } value_type &value() noexcept { tsl_hh_assert(!empty()); #if defined(__cplusplus) && __cplusplus >= 201703L return *std::launder(reinterpret_cast<value_type *>(std::addressof(m_value))); #else return *reinterpret_cast<value_type*>(std::addressof(m_value)); #endif } const value_type &value() const noexcept { tsl_hh_assert(!empty()); #if defined(__cplusplus) && __cplusplus >= 201703L return *std::launder(reinterpret_cast<const value_type *>(std::addressof(m_value))); #else return *reinterpret_cast<const value_type*>(std::addressof(m_value)); #endif } template<typename... Args> void set_value_of_empty_bucket(truncated_hash_type hash, Args &&... value_type_args) { tsl_hh_assert(empty()); ::new(static_cast<void *>(std::addressof(m_value))) value_type(std::forward<Args>(value_type_args)...); set_empty(false); this->set_hash(hash); } void swap_value_into_empty_bucket(hopscotch_bucket &empty_bucket) { tsl_hh_assert(empty_bucket.empty()); if (!empty()) { ::new(static_cast<void *>(std::addressof(empty_bucket.m_value))) value_type(std::move(value())); empty_bucket.copy_hash(*this); empty_bucket.set_empty(false); destroy_value(); set_empty(true); } } void remove_value() noexcept { if (!empty()) { destroy_value(); set_empty(true); } } void clear() noexcept { if (!empty()) { destroy_value(); } m_neighborhood_infos = 0; tsl_hh_assert(empty()); } static truncated_hash_type truncate_hash(std::size_t hash) noexcept { return truncated_hash_type(hash); } private: void set_empty(bool is_empty) noexcept { if (is_empty) { m_neighborhood_infos = neighborhood_bitmap(m_neighborhood_infos & ~1); } else { m_neighborhood_infos = neighborhood_bitmap(m_neighborhood_infos | 1); } } void destroy_value() noexcept { tsl_hh_assert(!empty()); value().~value_type(); } private: neighborhood_bitmap m_neighborhood_infos; alignas(value_type) unsigned char m_value[sizeof(value_type)]; }; template<class ValueType, class KeySelect, class ValueSelect, class Hash, class KeyEqual, class Allocator, unsigned int NeighborhoodSize, bool StoreHash, class GrowthPolicy, class OverflowContainer> class hopscotch_hash : private Hash, private KeyEqual, private GrowthPolicy { private: template<typename U> using has_mapped_type = typename std::integral_constant<bool, !std::is_same<U, void>::value>; static_assert(noexcept(std::declval<GrowthPolicy>().bucket_for_hash(std::size_t(0))), "GrowthPolicy::bucket_for_hash must be noexcept."); static_assert(noexcept(std::declval<GrowthPolicy>().clear()), "GrowthPolicy::clear must be noexcept."); public: template<bool IsConst> class hopscotch_iterator; using key_type = typename KeySelect::key_type; using value_type = ValueType; using size_type = std::size_t; using difference_type = std::ptrdiff_t; using hasher = Hash; using key_equal = KeyEqual; using allocator_type = Allocator; using reference = value_type &; using const_reference = const value_type &; using pointer = value_type *; using const_pointer = const value_type *; using iterator = hopscotch_iterator<false>; using const_iterator = hopscotch_iterator<true>; private: using hopscotch_bucket = tsl::detail_hopscotch_hash::hopscotch_bucket<ValueType, NeighborhoodSize, StoreHash>; using neighborhood_bitmap = typename hopscotch_bucket::neighborhood_bitmap; using buckets_allocator = typename std::allocator_traits<allocator_type>::template rebind_alloc<hopscotch_bucket>; using buckets_container_type = std::vector<hopscotch_bucket, buckets_allocator>; using overflow_container_type = OverflowContainer; static_assert(std::is_same<typename overflow_container_type::value_type, ValueType>::value, "OverflowContainer should have ValueType as type."); static_assert(std::is_same<typename overflow_container_type::allocator_type, Allocator>::value, "Invalid allocator, not the same type as the value_type."); using iterator_buckets = typename buckets_container_type::iterator; using const_iterator_buckets = typename buckets_container_type::const_iterator; using iterator_overflow = typename overflow_container_type::iterator; using const_iterator_overflow = typename overflow_container_type::const_iterator; public: template<bool IsConst> class hopscotch_iterator { friend class hopscotch_hash; private: using iterator_bucket = typename std::conditional<IsConst, typename hopscotch_hash::const_iterator_buckets, typename hopscotch_hash::iterator_buckets>::type; using iterator_overflow = typename std::conditional<IsConst, typename hopscotch_hash::const_iterator_overflow, typename hopscotch_hash::iterator_overflow>::type; hopscotch_iterator(iterator_bucket buckets_iterator, iterator_bucket buckets_end_iterator, iterator_overflow overflow_iterator) noexcept: m_buckets_iterator(buckets_iterator), m_buckets_end_iterator(buckets_end_iterator), m_overflow_iterator(overflow_iterator) {} public: using iterator_category = std::forward_iterator_tag; using value_type = const typename hopscotch_hash::value_type; using difference_type = std::ptrdiff_t; using reference = value_type &; using pointer = value_type *; hopscotch_iterator() noexcept {} template<bool TIsConst = IsConst, typename std::enable_if<TIsConst>::type * = nullptr> hopscotch_iterator(const hopscotch_iterator<!TIsConst> &other) noexcept : m_buckets_iterator(other.m_buckets_iterator), m_buckets_end_iterator(other.m_buckets_end_iterator), m_overflow_iterator(other.m_overflow_iterator) {} hopscotch_iterator(const hopscotch_iterator &other) = default; hopscotch_iterator(hopscotch_iterator &&other) = default; hopscotch_iterator &operator=(const hopscotch_iterator &other) = default; hopscotch_iterator &operator=(hopscotch_iterator &&other) = default; const typename hopscotch_hash::key_type &key() const { if (m_buckets_iterator != m_buckets_end_iterator) { return KeySelect()(m_buckets_iterator->value()); } return KeySelect()(*m_overflow_iterator); } template<class U = ValueSelect, typename std::enable_if<has_mapped_type<U>::value>::type * = nullptr> typename std::conditional<IsConst, const typename U::value_type &, typename U::value_type &>::type value() const { if (m_buckets_iterator != m_buckets_end_iterator) { return U()(m_buckets_iterator->value()); } return U()(*m_overflow_iterator); } reference operator*() const { if (m_buckets_iterator != m_buckets_end_iterator) { return m_buckets_iterator->value(); } return *m_overflow_iterator; } pointer operator->() const { if (m_buckets_iterator != m_buckets_end_iterator) { return std::addressof(m_buckets_iterator->value()); } return std::addressof(*m_overflow_iterator); } hopscotch_iterator &operator++() { if (m_buckets_iterator == m_buckets_end_iterator) { ++m_overflow_iterator; return *this; } do { ++m_buckets_iterator; } while (m_buckets_iterator != m_buckets_end_iterator && m_buckets_iterator->empty()); return *this; } hopscotch_iterator operator++(int) { hopscotch_iterator tmp(*this); ++*this; return tmp; } friend bool operator==(const hopscotch_iterator &lhs, const hopscotch_iterator &rhs) { return lhs.m_buckets_iterator == rhs.m_buckets_iterator && lhs.m_overflow_iterator == rhs.m_overflow_iterator; } friend bool operator!=(const hopscotch_iterator &lhs, const hopscotch_iterator &rhs) { return !(lhs == rhs); } private: iterator_bucket m_buckets_iterator; iterator_bucket m_buckets_end_iterator; iterator_overflow m_overflow_iterator; }; public: template<class OC = OverflowContainer, typename std::enable_if<!has_key_compare<OC>::value>::type * = nullptr> hopscotch_hash(size_type bucket_count, const Hash &hash, const KeyEqual &equal, const Allocator &alloc, float max_load_factor) : Hash(hash), KeyEqual(equal), GrowthPolicy(bucket_count), m_buckets_data(alloc), m_overflow_elements(alloc), m_buckets(static_empty_bucket_ptr()), m_nb_elements(0) { if (bucket_count > max_bucket_count()) { TSL_HH_THROW_OR_TERMINATE(std::length_error, "The map exceeds its maximum size."); } if (bucket_count > 0) { static_assert(NeighborhoodSize - 1 > 0, ""); m_buckets_data.resize(bucket_count + NeighborhoodSize - 1); m_buckets = m_buckets_data.data(); } this->max_load_factor(max_load_factor); static_assert(std::is_nothrow_move_constructible<value_type>::value || std::is_copy_constructible<value_type>::value, "value_type must be either copy constructible or nothrow " "move constructible."); } template<class OC = OverflowContainer, typename std::enable_if<has_key_compare<OC>::value>::type * = nullptr> hopscotch_hash(size_type bucket_count, const Hash &hash, const KeyEqual &equal, const Allocator &alloc, float max_load_factor, const typename OC::key_compare &comp) : Hash(hash), KeyEqual(equal), GrowthPolicy(bucket_count), m_buckets_data(alloc), m_overflow_elements(comp, alloc), m_buckets(static_empty_bucket_ptr()), m_nb_elements(0) { if (bucket_count > max_bucket_count()) { TSL_HH_THROW_OR_TERMINATE(std::length_error, "The map exceeds its maximum size."); } if (bucket_count > 0) { static_assert(NeighborhoodSize - 1 > 0, ""); m_buckets_data.resize(bucket_count + NeighborhoodSize - 1); m_buckets = m_buckets_data.data(); } this->max_load_factor(max_load_factor); static_assert(std::is_nothrow_move_constructible<value_type>::value || std::is_copy_constructible<value_type>::value, "value_type must be either copy constructible or nothrow " "move constructible."); } hopscotch_hash(const hopscotch_hash &other) : hopscotch_hash(other, other.get_allocator()) {} hopscotch_hash(const hopscotch_hash &other, const Allocator &alloc) : Hash(other), KeyEqual(other), GrowthPolicy(other), m_buckets_data(other.m_buckets_data, alloc), m_overflow_elements(other.m_overflow_elements), m_buckets(m_buckets_data.empty() ? static_empty_bucket_ptr() : m_buckets_data.data()), m_nb_elements(other.m_nb_elements), m_min_load_threshold_rehash(other.m_min_load_threshold_rehash), m_max_load_threshold_rehash(other.m_max_load_threshold_rehash), m_max_load_factor(other.m_max_load_factor) {} hopscotch_hash(hopscotch_hash &&other) noexcept(std::is_nothrow_move_constructible<Hash>::value && std::is_nothrow_move_constructible<KeyEqual>::value && std::is_nothrow_move_constructible<GrowthPolicy>::value && std::is_nothrow_move_constructible<buckets_container_type>::value && std::is_nothrow_move_constructible<overflow_container_type>::value): Hash(std::move(static_cast<Hash &>(other))), KeyEqual(std::move(static_cast<KeyEqual &>(other))), GrowthPolicy(std::move(static_cast<GrowthPolicy &>(other))), m_buckets_data(std::move(other.m_buckets_data)), m_overflow_elements(std::move(other.m_overflow_elements)), m_buckets(m_buckets_data.empty() ? static_empty_bucket_ptr() : m_buckets_data.data()), m_nb_elements(other.m_nb_elements), m_min_load_threshold_rehash(other.m_min_load_threshold_rehash), m_max_load_threshold_rehash(other.m_max_load_threshold_rehash), m_max_load_factor(other.m_max_load_factor) { other.GrowthPolicy::clear(); other.m_buckets_data.clear(); other.m_overflow_elements.clear(); other.m_buckets = static_empty_bucket_ptr(); other.m_nb_elements = 0; other.m_min_load_threshold_rehash = 0; other.m_max_load_threshold_rehash = 0; } hopscotch_hash &operator=(const hopscotch_hash &other) { if (&other != this) { Hash::operator=(other); KeyEqual::operator=(other); GrowthPolicy::operator=(other); m_buckets_data = other.m_buckets_data; m_overflow_elements = other.m_overflow_elements; m_buckets = m_buckets_data.empty() ? static_empty_bucket_ptr() : m_buckets_data.data(); m_nb_elements = other.m_nb_elements; m_min_load_threshold_rehash = other.m_min_load_threshold_rehash; m_max_load_threshold_rehash = other.m_max_load_threshold_rehash; m_max_load_factor = other.m_max_load_factor; } return *this; } hopscotch_hash &operator=(hopscotch_hash &&other) { other.swap(*this); other.clear(); return *this; } allocator_type get_allocator() const { return m_buckets_data.get_allocator(); } iterator begin() noexcept { auto begin = m_buckets_data.begin(); while (begin != m_buckets_data.end() && begin->empty()) { ++begin; } return iterator(begin, m_buckets_data.end(), m_overflow_elements.begin()); } const_iterator begin() const noexcept { return cbegin(); } const_iterator cbegin() const noexcept { auto begin = m_buckets_data.cbegin(); while (begin != m_buckets_data.cend() && begin->empty()) { ++begin; } return const_iterator(begin, m_buckets_data.cend(), m_overflow_elements.cbegin()); } iterator end() noexcept { return iterator(m_buckets_data.end(), m_buckets_data.end(), m_overflow_elements.end()); } const_iterator end() const noexcept { return cend(); } const_iterator cend() const noexcept { return const_iterator(m_buckets_data.cend(), m_buckets_data.cend(), m_overflow_elements.cend()); } bool empty() const noexcept { return m_nb_elements == 0; } size_type size() const noexcept { return m_nb_elements; } size_type max_size() const noexcept { return m_buckets_data.max_size(); } void clear() noexcept { for (auto &bucket: m_buckets_data) { bucket.clear(); } m_overflow_elements.clear(); m_nb_elements = 0; } std::pair<iterator, bool> insert(const value_type &value) { return insert_impl(value); } template<class P, typename std::enable_if<std::is_constructible<value_type, P &&>::value>::type * = nullptr> std::pair<iterator, bool> insert(P &&value) { return insert_impl(value_type(std::forward<P>(value))); } std::pair<iterator, bool> insert(value_type &&value) { return insert_impl(std::move(value)); } iterator insert(const_iterator hint, const value_type &value) { if (hint != cend() && compare_keys(KeySelect()(*hint), KeySelect()(value))) { return mutable_iterator(hint); } return insert(value).first; } template<class P, typename std::enable_if<std::is_constructible<value_type, P &&>::value>::type * = nullptr> iterator insert(const_iterator hint, P &&value) { return emplace_hint(hint, std::forward<P>(value)); } iterator insert(const_iterator hint, value_type &&value) { if (hint != cend() && compare_keys(KeySelect()(*hint), KeySelect()(value))) { return mutable_iterator(hint); } return insert(std::move(value)).first; } template<class InputIt> void insert(InputIt first, InputIt last) { if (std::is_base_of<std::forward_iterator_tag, typename std::iterator_traits<InputIt>::iterator_category>::value) { const auto nb_elements_insert = std::distance(first, last); const std::size_t nb_elements_in_buckets = m_nb_elements - m_overflow_elements.size(); const std::size_t nb_free_buckets = m_max_load_threshold_rehash - nb_elements_in_buckets; tsl_hh_assert(m_nb_elements >= m_overflow_elements.size()); tsl_hh_assert(m_max_load_threshold_rehash >= nb_elements_in_buckets); if (nb_elements_insert > 0 && nb_free_buckets < std::size_t(nb_elements_insert)) { reserve(nb_elements_in_buckets + std::size_t(nb_elements_insert)); } } for (; first != last; ++first) { insert(*first); } } template<class M> std::pair<iterator, bool> insert_or_assign(const key_type &k, M &&obj) { return insert_or_assign_impl(k, std::forward<M>(obj)); } template<class M> std::pair<iterator, bool> insert_or_assign(key_type &&k, M &&obj) { return insert_or_assign_impl(std::move(k), std::forward<M>(obj)); } template<class M> iterator insert_or_assign(const_iterator hint, const key_type &k, M &&obj) { if (hint != cend() && compare_keys(KeySelect()(*hint), k)) { auto it = mutable_iterator(hint); it.value() = std::forward<M>(obj); return it; } return insert_or_assign(k, std::forward<M>(obj)).first; } template<class M> iterator insert_or_assign(const_iterator hint, key_type &&k, M &&obj) { if (hint != cend() && compare_keys(KeySelect()(*hint), k)) { auto it = mutable_iterator(hint); it.value() = std::forward<M>(obj); return it; } return insert_or_assign(std::move(k), std::forward<M>(obj)).first; } template<class... Args> std::pair<iterator, bool> emplace(Args &&... args) { return insert(value_type(std::forward<Args>(args)...)); } template<class... Args> iterator emplace_hint(const_iterator hint, Args &&... args) { return insert(hint, value_type(std::forward<Args>(args)...)); } template<class... Args> std::pair<iterator, bool> try_emplace(const key_type &k, Args &&... args) { return try_emplace_impl(k, std::forward<Args>(args)...); } template<class... Args> std::pair<iterator, bool> try_emplace(key_type &&k, Args &&... args) { return try_emplace_impl(std::move(k), std::forward<Args>(args)...); } template<class... Args> iterator try_emplace(const_iterator hint, const key_type &k, Args &&... args) { if (hint != cend() && compare_keys(KeySelect()(*hint), k)) { return mutable_iterator(hint); } return try_emplace(k, std::forward<Args>(args)...).first; } template<class... Args> iterator try_emplace(const_iterator hint, key_type &&k, Args &&... args) { if (hint != cend() && compare_keys(KeySelect()(*hint), k)) { return mutable_iterator(hint); } return try_emplace(std::move(k), std::forward<Args>(args)...).first; } iterator erase(iterator pos) { return erase(const_iterator(pos)); } iterator erase(const_iterator pos) { const std::size_t ibucket_for_hash = bucket_for_hash(hash_key(pos.key())); if (pos.m_buckets_iterator != pos.m_buckets_end_iterator) { auto it_bucket = m_buckets_data.begin() + std::distance(m_buckets_data.cbegin(), pos.m_buckets_iterator); erase_from_bucket(*it_bucket, ibucket_for_hash); return ++iterator(it_bucket, m_buckets_data.end(), m_overflow_elements.begin()); } else { auto it_next_overflow = erase_from_overflow(pos.m_overflow_iterator, ibucket_for_hash); return iterator(m_buckets_data.end(), m_buckets_data.end(), it_next_overflow); } } iterator erase(const_iterator first, const_iterator last) { if (first == last) { return mutable_iterator(first); } auto to_delete = erase(first); while (to_delete != last) { to_delete = erase(to_delete); } return to_delete; } template<class K> size_type erase(const K &key) { return erase(key, hash_key(key)); } template<class K> size_type erase(const K &key, std::size_t hash) { const std::size_t ibucket_for_hash = bucket_for_hash(hash); hopscotch_bucket *bucket_found = find_in_buckets(key, hash, m_buckets + ibucket_for_hash); if (bucket_found != nullptr) { erase_from_bucket(*bucket_found, ibucket_for_hash); return 1; } if (m_buckets[ibucket_for_hash].has_overflow()) { auto it_overflow = find_in_overflow(key); if (it_overflow != m_overflow_elements.end()) { erase_from_overflow(it_overflow, ibucket_for_hash); return 1; } } return 0; } void swap(hopscotch_hash &other) { using std::swap; swap(static_cast<Hash &>(*this), static_cast<Hash &>(other)); swap(static_cast<KeyEqual &>(*this), static_cast<KeyEqual &>(other)); swap(static_cast<GrowthPolicy &>(*this), static_cast<GrowthPolicy &>(other)); swap(m_buckets_data, other.m_buckets_data); swap(m_overflow_elements, other.m_overflow_elements); swap(m_buckets, other.m_buckets); swap(m_nb_elements, other.m_nb_elements); swap(m_min_load_threshold_rehash, other.m_min_load_threshold_rehash); swap(m_max_load_threshold_rehash, other.m_max_load_threshold_rehash); swap(m_max_load_factor, other.m_max_load_factor); } template<class K, class U = ValueSelect, typename std::enable_if<has_mapped_type<U>::value>::type * = nullptr> typename U::value_type &at(const K &key) { return at(key, hash_key(key)); } template<class K, class U = ValueSelect, typename std::enable_if<has_mapped_type<U>::value>::type * = nullptr> typename U::value_type &at(const K &key, std::size_t hash) { return const_cast<typename U::value_type &>( static_cast<const hopscotch_hash *>(this)->at(key, hash)); } template<class K, class U = ValueSelect, typename std::enable_if<has_mapped_type<U>::value>::type * = nullptr> const typename U::value_type &at(const K &key) const { return at(key, hash_key(key)); } template<class K, class U = ValueSelect, typename std::enable_if<has_mapped_type<U>::value>::type * = nullptr> const typename U::value_type &at(const K &key, std::size_t hash) const { using T = typename U::value_type; const T *value = find_value_impl(key, hash, m_buckets + bucket_for_hash(hash)); if (value == nullptr) { TSL_HH_THROW_OR_TERMINATE(std::out_of_range, "Couldn't find key."); } else { return *value; } } template<class K, class U = ValueSelect, typename std::enable_if<has_mapped_type<U>::value>::type * = nullptr> typename U::value_type &operator[](K &&key) { using T = typename U::value_type; const std::size_t hash = hash_key(key); const std::size_t ibucket_for_hash = bucket_for_hash(hash); T *value = find_value_impl(key, hash, m_buckets + ibucket_for_hash); if (value != nullptr) { return *value; } else { return insert_value(ibucket_for_hash, hash, std::piecewise_construct, std::forward_as_tuple(std::forward<K>(key)), std::forward_as_tuple()).first.value(); } } template<class K> size_type count(const K &key) const { return count(key, hash_key(key)); } template<class K> size_type count(const K &key, std::size_t hash) const { return count_impl(key, hash, m_buckets + bucket_for_hash(hash)); } template<class K> iterator find(const K &key) { return find(key, hash_key(key)); } template<class K> iterator find(const K &key, std::size_t hash) { return find_impl(key, hash, m_buckets + bucket_for_hash(hash)); } template<class K> const_iterator find(const K &key) const { return find(key, hash_key(key)); } template<class K> const_iterator find(const K &key, std::size_t hash) const { return find_impl(key, hash, m_buckets + bucket_for_hash(hash)); } template<class K> bool contains(const K &key) const { return contains(key, hash_key(key)); } template<class K> bool contains(const K &key, std::size_t hash) const { return count(key, hash) != 0; } template<class K> std::pair<iterator, iterator> equal_range(const K &key) { return equal_range(key, hash_key(key)); } template<class K> std::pair<iterator, iterator> equal_range(const K &key, std::size_t hash) { iterator it = find(key, hash); return std::make_pair(it, (it == end()) ? it : std::next(it)); } template<class K> std::pair<const_iterator, const_iterator> equal_range(const K &key) const { return equal_range(key, hash_key(key)); } template<class K> std::pair<const_iterator, const_iterator> equal_range(const K &key, std::size_t hash) const { const_iterator it = find(key, hash); return std::make_pair(it, (it == cend()) ? it : std::next(it)); } size_type bucket_count() const { if (m_buckets_data.empty()) { return 0; } return m_buckets_data.size() - NeighborhoodSize + 1; } size_type max_bucket_count() const { const std::size_t max_bucket_count = std::min(GrowthPolicy::max_bucket_count(), m_buckets_data.max_size()); return max_bucket_count - NeighborhoodSize + 1; } float load_factor() const { if (bucket_count() == 0) { return 0; } return float(m_nb_elements) / float(bucket_count()); } float max_load_factor() const { return m_max_load_factor; } void max_load_factor(float ml) { m_max_load_factor = std::max(0.1f, std::min(ml, 0.95f)); m_min_load_threshold_rehash = size_type(float(bucket_count()) * MIN_LOAD_FACTOR_FOR_REHASH); m_max_load_threshold_rehash = size_type(float(bucket_count()) * m_max_load_factor); } void rehash(size_type count_) { count_ = std::max(count_, size_type(std::ceil(float(size()) / max_load_factor()))); rehash_impl(count_); } void reserve(size_type count_) { rehash(size_type(std::ceil(float(count_) / max_load_factor()))); } hasher hash_function() const { return static_cast<const Hash &>(*this); } key_equal key_eq() const { return static_cast<const KeyEqual &>(*this); } iterator mutable_iterator(const_iterator pos) { if (pos.m_buckets_iterator != pos.m_buckets_end_iterator) { auto it = m_buckets_data.begin() + std::distance(m_buckets_data.cbegin(), pos.m_buckets_iterator); return iterator(it, m_buckets_data.end(), m_overflow_elements.begin()); } else { auto it = mutable_overflow_iterator(pos.m_overflow_iterator); return iterator(m_buckets_data.end(), m_buckets_data.end(), it); } } size_type overflow_size() const noexcept { return m_overflow_elements.size(); } template<class U = OverflowContainer, typename std::enable_if<has_key_compare<U>::value>::type * = nullptr> typename U::key_compare key_comp() const { return m_overflow_elements.key_comp(); } private: template<class K> std::size_t hash_key(const K &key) const { return Hash::operator()(key); } template<class K1, class K2> bool compare_keys(const K1 &key1, const K2 &key2) const { return KeyEqual::operator()(key1, key2); } std::size_t bucket_for_hash(std::size_t hash) const { const std::size_t bucket = GrowthPolicy::bucket_for_hash(hash); tsl_hh_assert(bucket < m_buckets_data.size() || (bucket == 0 && m_buckets_data.empty())); return bucket; } template<typename U = value_type, typename std::enable_if<std::is_nothrow_move_constructible<U>::value>::type * = nullptr> void rehash_impl(size_type count_) { hopscotch_hash new_map = new_hopscotch_hash(count_); if (!m_overflow_elements.empty()) { new_map.m_overflow_elements.swap(m_overflow_elements); new_map.m_nb_elements += new_map.m_overflow_elements.size(); for (const value_type &value: new_map.m_overflow_elements) { const std::size_t ibucket_for_hash = new_map.bucket_for_hash(new_map.hash_key(KeySelect()(value))); new_map.m_buckets[ibucket_for_hash].set_overflow(true); } } #ifndef TSL_HH_NO_EXCEPTIONS try { #endif const bool use_stored_hash = USE_STORED_HASH_ON_REHASH(new_map.bucket_count()); for (auto it_bucket = m_buckets_data.begin(); it_bucket != m_buckets_data.end(); ++it_bucket) { if (it_bucket->empty()) { continue; } const std::size_t hash = use_stored_hash ? it_bucket->truncated_bucket_hash() : new_map.hash_key(KeySelect()(it_bucket->value())); const std::size_t ibucket_for_hash = new_map.bucket_for_hash(hash); new_map.insert_value(ibucket_for_hash, hash, std::move(it_bucket->value())); erase_from_bucket(*it_bucket, bucket_for_hash(hash)); } #ifndef TSL_HH_NO_EXCEPTIONS } catch (...) { m_overflow_elements.swap(new_map.m_overflow_elements); const bool use_stored_hash = USE_STORED_HASH_ON_REHASH(new_map.bucket_count()); for (auto it_bucket = new_map.m_buckets_data.begin(); it_bucket != new_map.m_buckets_data.end(); ++it_bucket) { if (it_bucket->empty()) { continue; } const std::size_t hash = use_stored_hash ? it_bucket->truncated_bucket_hash() : hash_key(KeySelect()(it_bucket->value())); const std::size_t ibucket_for_hash = bucket_for_hash(hash); insert_value(ibucket_for_hash, hash, std::move(it_bucket->value())); } throw; } #endif new_map.swap(*this); } template<typename U = value_type, typename std::enable_if<std::is_copy_constructible<U>::value && !std::is_nothrow_move_constructible<U>::value>::type * = nullptr> void rehash_impl(size_type count_) { hopscotch_hash new_map = new_hopscotch_hash(count_); const bool use_stored_hash = USE_STORED_HASH_ON_REHASH(new_map.bucket_count()); for (const hopscotch_bucket &bucket: m_buckets_data) { if (bucket.empty()) { continue; } const std::size_t hash = use_stored_hash ? bucket.truncated_bucket_hash() : new_map.hash_key(KeySelect()(bucket.value())); const std::size_t ibucket_for_hash = new_map.bucket_for_hash(hash); new_map.insert_value(ibucket_for_hash, hash, bucket.value()); } for (const value_type &value: m_overflow_elements) { const std::size_t hash = new_map.hash_key(KeySelect()(value)); const std::size_t ibucket_for_hash = new_map.bucket_for_hash(hash); new_map.insert_value(ibucket_for_hash, hash, value); } new_map.swap(*this); } #ifdef TSL_HH_NO_RANGE_ERASE_WITH_CONST_ITERATOR iterator_overflow mutable_overflow_iterator(const_iterator_overflow it) { return std::next(m_overflow_elements.begin(), std::distance(m_overflow_elements.cbegin(), it)); } #else iterator_overflow mutable_overflow_iterator(const_iterator_overflow it) { return m_overflow_elements.erase(it, it); } #endif iterator_overflow erase_from_overflow(const_iterator_overflow pos, std::size_t ibucket_for_hash) { #ifdef TSL_HH_NO_RANGE_ERASE_WITH_CONST_ITERATOR auto it_next = m_overflow_elements.erase(mutable_overflow_iterator(pos)); #else auto it_next = m_overflow_elements.erase(pos); #endif m_nb_elements--; tsl_hh_assert(m_buckets[ibucket_for_hash].has_overflow()); for (const value_type &value: m_overflow_elements) { const std::size_t bucket_for_value = bucket_for_hash(hash_key(KeySelect()(value))); if (bucket_for_value == ibucket_for_hash) { return it_next; } } m_buckets[ibucket_for_hash].set_overflow(false); return it_next; } void erase_from_bucket(hopscotch_bucket &bucket_for_value, std::size_t ibucket_for_hash) noexcept { const std::size_t ibucket_for_value = std::distance(m_buckets_data.data(), &bucket_for_value); tsl_hh_assert(ibucket_for_value >= ibucket_for_hash); bucket_for_value.remove_value(); m_buckets[ibucket_for_hash].toggle_neighbor_presence(ibucket_for_value - ibucket_for_hash); m_nb_elements--; } template<class K, class M> std::pair<iterator, bool> insert_or_assign_impl(K &&key, M &&obj) { auto it = try_emplace_impl(std::forward<K>(key), std::forward<M>(obj)); if (!it.second) { it.first.value() = std::forward<M>(obj); } return it; } template<typename P, class... Args> std::pair<iterator, bool> try_emplace_impl(P &&key, Args &&... args_value) { const std::size_t hash = hash_key(key); const std::size_t ibucket_for_hash = bucket_for_hash(hash); auto it_find = find_impl(key, hash, m_buckets + ibucket_for_hash); if (it_find != end()) { return std::make_pair(it_find, false); } return insert_value(ibucket_for_hash, hash, std::piecewise_construct, std::forward_as_tuple(std::forward<P>(key)), std::forward_as_tuple(std::forward<Args>(args_value)...)); } template<typename P> std::pair<iterator, bool> insert_impl(P &&value) { const std::size_t hash = hash_key(KeySelect()(value)); const std::size_t ibucket_for_hash = bucket_for_hash(hash); auto it_find = find_impl(KeySelect()(value), hash, m_buckets + ibucket_for_hash); if (it_find != end()) { return std::make_pair(it_find, false); } return insert_value(ibucket_for_hash, hash, std::forward<P>(value)); } template<typename... Args> std::pair<iterator, bool> insert_value(std::size_t ibucket_for_hash, std::size_t hash, Args &&... value_type_args) { if ((m_nb_elements - m_overflow_elements.size()) >= m_max_load_threshold_rehash) { rehash(GrowthPolicy::next_bucket_count()); ibucket_for_hash = bucket_for_hash(hash); } std::size_t ibucket_empty = find_empty_bucket(ibucket_for_hash); if (ibucket_empty < m_buckets_data.size()) { do { tsl_hh_assert(ibucket_empty >= ibucket_for_hash); if (ibucket_empty - ibucket_for_hash < NeighborhoodSize) { auto it = insert_in_bucket(ibucket_empty, ibucket_for_hash, hash, std::forward<Args>(value_type_args)...); return std::make_pair(iterator(it, m_buckets_data.end(), m_overflow_elements.begin()), true); } } while (swap_empty_bucket_closer(ibucket_empty)); } if (size() < m_min_load_threshold_rehash || !will_neighborhood_change_on_rehash(ibucket_for_hash)) { auto it = insert_in_overflow(ibucket_for_hash, std::forward<Args>(value_type_args)...); return std::make_pair(iterator(m_buckets_data.end(), m_buckets_data.end(), it), true); } rehash(GrowthPolicy::next_bucket_count()); ibucket_for_hash = bucket_for_hash(hash); return insert_value(ibucket_for_hash, hash, std::forward<Args>(value_type_args)...); } bool will_neighborhood_change_on_rehash(size_t ibucket_neighborhood_check) const { std::size_t expand_bucket_count = GrowthPolicy::next_bucket_count(); GrowthPolicy expand_growth_policy(expand_bucket_count); const bool use_stored_hash = USE_STORED_HASH_ON_REHASH(expand_bucket_count); for (size_t ibucket = ibucket_neighborhood_check; ibucket < m_buckets_data.size() && (ibucket - ibucket_neighborhood_check) < NeighborhoodSize; ++ibucket) { tsl_hh_assert(!m_buckets[ibucket].empty()); const size_t hash = use_stored_hash ? m_buckets[ibucket].truncated_bucket_hash() : hash_key(KeySelect()(m_buckets[ibucket].value())); if (bucket_for_hash(hash) != expand_growth_policy.bucket_for_hash(hash)) { return true; } } return false; } std::size_t find_empty_bucket(std::size_t ibucket_start) const { const std::size_t limit = std::min(ibucket_start + MAX_PROBES_FOR_EMPTY_BUCKET, m_buckets_data.size()); for (; ibucket_start < limit; ibucket_start++) { if (m_buckets[ibucket_start].empty()) { return ibucket_start; } } return m_buckets_data.size(); } template<typename... Args> iterator_buckets insert_in_bucket(std::size_t ibucket_empty, std::size_t ibucket_for_hash, std::size_t hash, Args &&... value_type_args) { tsl_hh_assert(ibucket_empty >= ibucket_for_hash); tsl_hh_assert(m_buckets[ibucket_empty].empty()); m_buckets[ibucket_empty].set_value_of_empty_bucket(hopscotch_bucket::truncate_hash(hash), std::forward<Args>(value_type_args)...); tsl_hh_assert(!m_buckets[ibucket_for_hash].empty()); m_buckets[ibucket_for_hash].toggle_neighbor_presence(ibucket_empty - ibucket_for_hash); m_nb_elements++; return m_buckets_data.begin() + ibucket_empty; } template<class... Args, class U = OverflowContainer, typename std::enable_if<!has_key_compare<U>::value>::type * = nullptr> iterator_overflow insert_in_overflow(std::size_t ibucket_for_hash, Args &&... value_type_args) { auto it = m_overflow_elements.emplace(m_overflow_elements.end(), std::forward<Args>(value_type_args)...); m_buckets[ibucket_for_hash].set_overflow(true); m_nb_elements++; return it; } template<class... Args, class U = OverflowContainer, typename std::enable_if<has_key_compare<U>::value>::type * = nullptr> iterator_overflow insert_in_overflow(std::size_t ibucket_for_hash, Args &&... value_type_args) { auto it = m_overflow_elements.emplace(std::forward<Args>(value_type_args)...).first; m_buckets[ibucket_for_hash].set_overflow(true); m_nb_elements++; return it; } bool swap_empty_bucket_closer(std::size_t &ibucket_empty_in_out) { tsl_hh_assert(ibucket_empty_in_out >= NeighborhoodSize); const std::size_t neighborhood_start = ibucket_empty_in_out - NeighborhoodSize + 1; for (std::size_t to_check = neighborhood_start; to_check < ibucket_empty_in_out; to_check++) { neighborhood_bitmap neighborhood_infos = m_buckets[to_check].neighborhood_infos(); std::size_t to_swap = to_check; while (neighborhood_infos != 0 && to_swap < ibucket_empty_in_out) { if ((neighborhood_infos & 1) == 1) { tsl_hh_assert(m_buckets[ibucket_empty_in_out].empty()); tsl_hh_assert(!m_buckets[to_swap].empty()); m_buckets[to_swap].swap_value_into_empty_bucket(m_buckets[ibucket_empty_in_out]); tsl_hh_assert(!m_buckets[to_check].check_neighbor_presence(ibucket_empty_in_out - to_check)); tsl_hh_assert(m_buckets[to_check].check_neighbor_presence(to_swap - to_check)); m_buckets[to_check].toggle_neighbor_presence(ibucket_empty_in_out - to_check); m_buckets[to_check].toggle_neighbor_presence(to_swap - to_check); ibucket_empty_in_out = to_swap; return true; } to_swap++; neighborhood_infos = neighborhood_bitmap(neighborhood_infos >> 1); } } return false; } template<class K, class U = ValueSelect, typename std::enable_if<has_mapped_type<U>::value>::type * = nullptr> typename U::value_type *find_value_impl(const K &key, std::size_t hash, hopscotch_bucket *bucket_for_hash) { return const_cast<typename U::value_type *>( static_cast<const hopscotch_hash *>(this)->find_value_impl(key, hash, bucket_for_hash)); } template<class K, class U = ValueSelect, typename std::enable_if<has_mapped_type<U>::value>::type * = nullptr> const typename U::value_type *find_value_impl(const K &key, std::size_t hash, const hopscotch_bucket *bucket_for_hash) const { const hopscotch_bucket *bucket_found = find_in_buckets(key, hash, bucket_for_hash); if (bucket_found != nullptr) { return std::addressof(ValueSelect()(bucket_found->value())); } if (bucket_for_hash->has_overflow()) { auto it_overflow = find_in_overflow(key); if (it_overflow != m_overflow_elements.end()) { return std::addressof(ValueSelect()(*it_overflow)); } } return nullptr; } template<class K> size_type count_impl(const K &key, std::size_t hash, const hopscotch_bucket *bucket_for_hash) const { if (find_in_buckets(key, hash, bucket_for_hash) != nullptr) { return 1; } else if (bucket_for_hash->has_overflow() && find_in_overflow(key) != m_overflow_elements.cend()) { return 1; } else { return 0; } } template<class K> iterator find_impl(const K &key, std::size_t hash, hopscotch_bucket *bucket_for_hash) { hopscotch_bucket *bucket_found = find_in_buckets(key, hash, bucket_for_hash); if (bucket_found != nullptr) { return iterator(m_buckets_data.begin() + std::distance(m_buckets_data.data(), bucket_found), m_buckets_data.end(), m_overflow_elements.begin()); } if (!bucket_for_hash->has_overflow()) { return end(); } return iterator(m_buckets_data.end(), m_buckets_data.end(), find_in_overflow(key)); } template<class K> const_iterator find_impl(const K &key, std::size_t hash, const hopscotch_bucket *bucket_for_hash) const { const hopscotch_bucket *bucket_found = find_in_buckets(key, hash, bucket_for_hash); if (bucket_found != nullptr) { return const_iterator(m_buckets_data.cbegin() + std::distance(m_buckets_data.data(), bucket_found), m_buckets_data.cend(), m_overflow_elements.cbegin()); } if (!bucket_for_hash->has_overflow()) { return cend(); } return const_iterator(m_buckets_data.cend(), m_buckets_data.cend(), find_in_overflow(key)); } template<class K> hopscotch_bucket *find_in_buckets(const K &key, std::size_t hash, hopscotch_bucket *bucket_for_hash) { const hopscotch_bucket *bucket_found = static_cast<const hopscotch_hash *>(this)->find_in_buckets(key, hash, bucket_for_hash); return const_cast<hopscotch_bucket *>(bucket_found); } template<class K> const hopscotch_bucket *find_in_buckets(const K &key, std::size_t hash, const hopscotch_bucket *bucket_for_hash) const { (void) hash; neighborhood_bitmap neighborhood_infos = bucket_for_hash->neighborhood_infos(); while (neighborhood_infos != 0) { if ((neighborhood_infos & 1) == 1) { if ((!StoreHash || bucket_for_hash->bucket_hash_equal(hash)) && compare_keys(KeySelect()(bucket_for_hash->value()), key)) { return bucket_for_hash; } } ++bucket_for_hash; neighborhood_infos = neighborhood_bitmap(neighborhood_infos >> 1); } return nullptr; } template<class K, class U = OverflowContainer, typename std::enable_if<!has_key_compare<U>::value>::type * = nullptr> iterator_overflow find_in_overflow(const K &key) { return std::find_if(m_overflow_elements.begin(), m_overflow_elements.end(), [&](const value_type &value) { return compare_keys(key, KeySelect()(value)); }); } template<class K, class U = OverflowContainer, typename std::enable_if<!has_key_compare<U>::value>::type * = nullptr> const_iterator_overflow find_in_overflow(const K &key) const { return std::find_if(m_overflow_elements.cbegin(), m_overflow_elements.cend(), [&](const value_type &value) { return compare_keys(key, KeySelect()(value)); }); } template<class K, class U = OverflowContainer, typename std::enable_if<has_key_compare<U>::value>::type * = nullptr> iterator_overflow find_in_overflow(const K &key) { return m_overflow_elements.find(key); } template<class K, class U = OverflowContainer, typename std::enable_if<has_key_compare<U>::value>::type * = nullptr> const_iterator_overflow find_in_overflow(const K &key) const { return m_overflow_elements.find(key); } template<class U = OverflowContainer, typename std::enable_if<!has_key_compare<U>::value>::type * = nullptr> hopscotch_hash new_hopscotch_hash(size_type bucket_count) { return hopscotch_hash(bucket_count, static_cast<Hash &>(*this), static_cast<KeyEqual &>(*this), get_allocator(), m_max_load_factor); } template<class U = OverflowContainer, typename std::enable_if<has_key_compare<U>::value>::type * = nullptr> hopscotch_hash new_hopscotch_hash(size_type bucket_count) { return hopscotch_hash(bucket_count, static_cast<Hash &>(*this), static_cast<KeyEqual &>(*this), get_allocator(), m_max_load_factor, m_overflow_elements.key_comp()); } public: static const size_type DEFAULT_INIT_BUCKETS_SIZE = 0; static constexpr float DEFAULT_MAX_LOAD_FACTOR = (NeighborhoodSize <= 30) ? 0.8f : 0.9f; private: static const std::size_t MAX_PROBES_FOR_EMPTY_BUCKET = 12 * NeighborhoodSize; static constexpr float MIN_LOAD_FACTOR_FOR_REHASH = 0.1f; template<class T = size_type, typename std::enable_if<std::is_same<T, truncated_hash_type>::value>::type * = nullptr> static bool USE_STORED_HASH_ON_REHASH(size_type /*bucket_count*/) { return StoreHash; } template<class T = size_type, typename std::enable_if<!std::is_same<T, truncated_hash_type>::value>::type * = nullptr> static bool USE_STORED_HASH_ON_REHASH(size_type bucket_count) { (void) bucket_count; if (StoreHash && is_power_of_two_policy<GrowthPolicy>::value) { tsl_hh_assert(bucket_count > 0); return (bucket_count - 1) <= std::numeric_limits<truncated_hash_type>::max(); } else { return false; } } hopscotch_bucket *static_empty_bucket_ptr() { static hopscotch_bucket empty_bucket; return &empty_bucket; } private: buckets_container_type m_buckets_data; overflow_container_type m_overflow_elements; hopscotch_bucket *m_buckets; size_type m_nb_elements; size_type m_min_load_threshold_rehash; size_type m_max_load_threshold_rehash; float m_max_load_factor; }; } // end namespace detail_hopscotch_hash } // end namespace tsl #endif namespace tsl { template<class Key, class T, class Hash = std::hash<Key>, class KeyEqual = std::equal_to<Key>, class Allocator = std::allocator<std::pair<Key, T>>, unsigned int NeighborhoodSize = 62, bool StoreHash = false, class GrowthPolicy = tsl::hh::power_of_two_growth_policy<2>> class hopscotch_map { private: template<typename U> using has_is_transparent = tsl::detail_hopscotch_hash::has_is_transparent<U>; class KeySelect { public: using key_type = Key; const key_type &operator()(const std::pair<Key, T> &key_value) const { return key_value.first; } key_type &operator()(std::pair<Key, T> &key_value) { return key_value.first; } }; class ValueSelect { public: using value_type = T; const value_type &operator()(const std::pair<Key, T> &key_value) const { return key_value.second; } value_type &operator()(std::pair<Key, T> &key_value) { return key_value.second; } }; using overflow_container_type = std::list<std::pair<Key, T>, Allocator>; using ht = detail_hopscotch_hash::hopscotch_hash<std::pair<Key, T>, KeySelect, ValueSelect, Hash, KeyEqual, Allocator, NeighborhoodSize, StoreHash, GrowthPolicy, overflow_container_type>; public: using key_type = typename ht::key_type; using mapped_type = T; using value_type = typename ht::value_type; using size_type = typename ht::size_type; using difference_type = typename ht::difference_type; using hasher = typename ht::hasher; using key_equal = typename ht::key_equal; using allocator_type = typename ht::allocator_type; using reference = typename ht::reference; using const_reference = typename ht::const_reference; using pointer = typename ht::pointer; using const_pointer = typename ht::const_pointer; using iterator = typename ht::iterator; using const_iterator = typename ht::const_iterator; hopscotch_map() : hopscotch_map(ht::DEFAULT_INIT_BUCKETS_SIZE) {} explicit hopscotch_map(size_type bucket_count, const Hash &hash = Hash(), const KeyEqual &equal = KeyEqual(), const Allocator &alloc = Allocator()) : m_ht(bucket_count, hash, equal, alloc, ht::DEFAULT_MAX_LOAD_FACTOR) {} hopscotch_map(size_type bucket_count, const Allocator &alloc) : hopscotch_map(bucket_count, Hash(), KeyEqual(), alloc) {} hopscotch_map(size_type bucket_count, const Hash &hash, const Allocator &alloc) : hopscotch_map(bucket_count, hash, KeyEqual(), alloc) {} explicit hopscotch_map(const Allocator &alloc) : hopscotch_map(ht::DEFAULT_INIT_BUCKETS_SIZE, alloc) {} hopscotch_map(const hopscotch_map &other, const Allocator &alloc) : m_ht(other.m_ht, alloc) {} template<class InputIt> hopscotch_map(InputIt first, InputIt last, size_type bucket_count = ht::DEFAULT_INIT_BUCKETS_SIZE, const Hash &hash = Hash(), const KeyEqual &equal = KeyEqual(), const Allocator &alloc = Allocator()) : hopscotch_map(bucket_count, hash, equal, alloc) { insert(first, last); } template<class InputIt> hopscotch_map(InputIt first, InputIt last, size_type bucket_count, const Allocator &alloc) : hopscotch_map(first, last, bucket_count, Hash(), KeyEqual(), alloc) {} template<class InputIt> hopscotch_map(InputIt first, InputIt last, size_type bucket_count, const Hash &hash, const Allocator &alloc) : hopscotch_map(first, last, bucket_count, hash, KeyEqual(), alloc) {} hopscotch_map(std::initializer_list<value_type> init, size_type bucket_count = ht::DEFAULT_INIT_BUCKETS_SIZE, const Hash &hash = Hash(), const KeyEqual &equal = KeyEqual(), const Allocator &alloc = Allocator()) : hopscotch_map(init.begin(), init.end(), bucket_count, hash, equal, alloc) {} hopscotch_map(std::initializer_list<value_type> init, size_type bucket_count, const Allocator &alloc) : hopscotch_map(init.begin(), init.end(), bucket_count, Hash(), KeyEqual(), alloc) {} hopscotch_map(std::initializer_list<value_type> init, size_type bucket_count, const Hash &hash, const Allocator &alloc) : hopscotch_map(init.begin(), init.end(), bucket_count, hash, KeyEqual(), alloc) {} hopscotch_map &operator=(std::initializer_list<value_type> ilist) { m_ht.clear(); m_ht.reserve(ilist.size()); m_ht.insert(ilist.begin(), ilist.end()); return *this; } allocator_type get_allocator() const { return m_ht.get_allocator(); } iterator begin() noexcept { return m_ht.begin(); } const_iterator begin() const noexcept { return m_ht.begin(); } const_iterator cbegin() const noexcept { return m_ht.cbegin(); } iterator end() noexcept { return m_ht.end(); } const_iterator end() const noexcept { return m_ht.end(); } const_iterator cend() const noexcept { return m_ht.cend(); } bool empty() const noexcept { return m_ht.empty(); } size_type size() const noexcept { return m_ht.size(); } size_type max_size() const noexcept { return m_ht.max_size(); } void clear() noexcept { m_ht.clear(); } std::pair<iterator, bool> insert(const value_type &value) { return m_ht.insert(value); } template<class P, typename std::enable_if<std::is_constructible<value_type, P &&>::value>::type * = nullptr> std::pair<iterator, bool> insert(P &&value) { return m_ht.insert(std::forward<P>(value)); } std::pair<iterator, bool> insert(value_type &&value) { return m_ht.insert(std::move(value)); } iterator insert(const_iterator hint, const value_type &value) { return m_ht.insert(hint, value); } template<class P, typename std::enable_if<std::is_constructible<value_type, P &&>::value>::type * = nullptr> iterator insert(const_iterator hint, P &&value) { return m_ht.insert(hint, std::forward<P>(value)); } iterator insert(const_iterator hint, value_type &&value) { return m_ht.insert(hint, std::move(value)); } template<class InputIt> void insert(InputIt first, InputIt last) { m_ht.insert(first, last); } void insert(std::initializer_list<value_type> ilist) { m_ht.insert(ilist.begin(), ilist.end()); } template<class M> std::pair<iterator, bool> insert_or_assign(const key_type &k, M &&obj) { return m_ht.insert_or_assign(k, std::forward<M>(obj)); } template<class M> std::pair<iterator, bool> insert_or_assign(key_type &&k, M &&obj) { return m_ht.insert_or_assign(std::move(k), std::forward<M>(obj)); } template<class M> iterator insert_or_assign(const_iterator hint, const key_type &k, M &&obj) { return m_ht.insert_or_assign(hint, k, std::forward<M>(obj)); } template<class M> iterator insert_or_assign(const_iterator hint, key_type &&k, M &&obj) { return m_ht.insert_or_assign(hint, std::move(k), std::forward<M>(obj)); } template<class... Args> std::pair<iterator, bool> emplace(Args &&... args) { return m_ht.emplace(std::forward<Args>(args)...); } template<class... Args> iterator emplace_hint(const_iterator hint, Args &&... args) { return m_ht.emplace_hint(hint, std::forward<Args>(args)...); } template<class... Args> std::pair<iterator, bool> try_emplace(const key_type &k, Args &&... args) { return m_ht.try_emplace(k, std::forward<Args>(args)...); } template<class... Args> std::pair<iterator, bool> try_emplace(key_type &&k, Args &&... args) { return m_ht.try_emplace(std::move(k), std::forward<Args>(args)...); } template<class... Args> iterator try_emplace(const_iterator hint, const key_type &k, Args &&... args) { return m_ht.try_emplace(hint, k, std::forward<Args>(args)...); } template<class... Args> iterator try_emplace(const_iterator hint, key_type &&k, Args &&... args) { return m_ht.try_emplace(hint, std::move(k), std::forward<Args>(args)...); } iterator erase(iterator pos) { return m_ht.erase(pos); } iterator erase(const_iterator pos) { return m_ht.erase(pos); } iterator erase(const_iterator first, const_iterator last) { return m_ht.erase(first, last); } size_type erase(const key_type &key) { return m_ht.erase(key); } size_type erase(const key_type &key, std::size_t precalculated_hash) { return m_ht.erase(key, precalculated_hash); } template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type * = nullptr> size_type erase(const K &key) { return m_ht.erase(key); } template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type * = nullptr> size_type erase(const K &key, std::size_t precalculated_hash) { return m_ht.erase(key, precalculated_hash); } void swap(hopscotch_map &other) { other.m_ht.swap(m_ht); } T &at(const Key &key) { return m_ht.at(key); } T &at(const Key &key, std::size_t precalculated_hash) { return m_ht.at(key, precalculated_hash); } const T &at(const Key &key) const { return m_ht.at(key); } const T &at(const Key &key, std::size_t precalculated_hash) const { return m_ht.at(key, precalculated_hash); } template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type * = nullptr> T &at(const K &key) { return m_ht.at(key); } template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type * = nullptr> T &at(const K &key, std::size_t precalculated_hash) { return m_ht.at(key, precalculated_hash); } template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type * = nullptr> const T &at(const K &key) const { return m_ht.at(key); } template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type * = nullptr> const T &at(const K &key, std::size_t precalculated_hash) const { return m_ht.at(key, precalculated_hash); } T &operator[](const Key &key) { return m_ht[key]; } T &operator[](Key &&key) { return m_ht[std::move(key)]; } size_type count(const Key &key) const { return m_ht.count(key); } size_type count(const Key &key, std::size_t precalculated_hash) const { return m_ht.count(key, precalculated_hash); } template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type * = nullptr> size_type count(const K &key) const { return m_ht.count(key); } template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type * = nullptr> size_type count(const K &key, std::size_t precalculated_hash) const { return m_ht.count(key, precalculated_hash); } iterator find(const Key &key) { return m_ht.find(key); } iterator find(const Key &key, std::size_t precalculated_hash) { return m_ht.find(key, precalculated_hash); } const_iterator find(const Key &key) const { return m_ht.find(key); } const_iterator find(const Key &key, std::size_t precalculated_hash) const { return m_ht.find(key, precalculated_hash); } template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type * = nullptr> iterator find(const K &key) { return m_ht.find(key); } template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type * = nullptr> iterator find(const K &key, std::size_t precalculated_hash) { return m_ht.find(key, precalculated_hash); } template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type * = nullptr> const_iterator find(const K &key) const { return m_ht.find(key); } template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type * = nullptr> const_iterator find(const K &key, std::size_t precalculated_hash) const { return m_ht.find(key, precalculated_hash); } bool contains(const Key &key) const { return m_ht.contains(key); } bool contains(const Key &key, std::size_t precalculated_hash) const { return m_ht.contains(key, precalculated_hash); } template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type * = nullptr> bool contains(const K &key) const { return m_ht.contains(key); } template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type * = nullptr> bool contains(const K &key, std::size_t precalculated_hash) const { return m_ht.contains(key, precalculated_hash); } std::pair<iterator, iterator> equal_range(const Key &key) { return m_ht.equal_range(key); } std::pair<iterator, iterator> equal_range(const Key &key, std::size_t precalculated_hash) { return m_ht.equal_range(key, precalculated_hash); } std::pair<const_iterator, const_iterator> equal_range(const Key &key) const { return m_ht.equal_range(key); } std::pair<const_iterator, const_iterator> equal_range(const Key &key, std::size_t precalculated_hash) const { return m_ht.equal_range(key, precalculated_hash); } template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type * = nullptr> std::pair<iterator, iterator> equal_range(const K &key) { return m_ht.equal_range(key); } template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type * = nullptr> std::pair<iterator, iterator> equal_range(const K &key, std::size_t precalculated_hash) { return m_ht.equal_range(key, precalculated_hash); } template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type * = nullptr> std::pair<const_iterator, const_iterator> equal_range(const K &key) const { return m_ht.equal_range(key); } template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type * = nullptr> std::pair<const_iterator, const_iterator> equal_range(const K &key, std::size_t precalculated_hash) const { return m_ht.equal_range(key, precalculated_hash); } size_type bucket_count() const { return m_ht.bucket_count(); } size_type max_bucket_count() const { return m_ht.max_bucket_count(); } float load_factor() const { return m_ht.load_factor(); } float max_load_factor() const { return m_ht.max_load_factor(); } void max_load_factor(float ml) { m_ht.max_load_factor(ml); } void rehash(size_type count_) { m_ht.rehash(count_); } void reserve(size_type count_) { m_ht.reserve(count_); } hasher hash_function() const { return m_ht.hash_function(); } key_equal key_eq() const { return m_ht.key_eq(); } iterator mutable_iterator(const_iterator pos) { return m_ht.mutable_iterator(pos); } size_type overflow_size() const noexcept { return m_ht.overflow_size(); } friend bool operator==(const hopscotch_map &lhs, const hopscotch_map &rhs) { if (lhs.size() != rhs.size()) { return false; } for (const auto &element_lhs: lhs) { const auto it_element_rhs = rhs.find(element_lhs.first); if (it_element_rhs == rhs.cend() || element_lhs.second != it_element_rhs->second) { return false; } } return true; } friend bool operator!=(const hopscotch_map &lhs, const hopscotch_map &rhs) { return !operator==(lhs, rhs); } friend void swap(hopscotch_map &lhs, hopscotch_map &rhs) { lhs.swap(rhs); } private: ht m_ht; }; template<class Key, class T, class Hash = std::hash<Key>, class KeyEqual = std::equal_to<Key>, class Allocator = std::allocator<std::pair<Key, T>>, unsigned int NeighborhoodSize = 62, bool StoreHash = false> using hopscotch_pg_map = hopscotch_map<Key, T, Hash, KeyEqual, Allocator, NeighborhoodSize, StoreHash, tsl::hh::prime_growth_policy>; } // end namespace tsl #endif using namespace std; #include <iostream> #define int long long int my_abs(int x) {if (x < 0) {return -x;} else {return x;}} signed main() { cin.tie(nullptr); ios::sync_with_stdio(false); vector<vector<int>> C(2000, vector<int>(30)); for (int k = 1; k <= 2; k++) C[0][k] = 0; for (int n = 0; n <= 1000; n++) C[n][0] = 1; for (int n = 1; n <= 1000; n++) for (int k = 1; k <= 2; k++) C[n][k] = C[n - 1][k - 1] + C[n - 1][k]; int n; cin >> n; vector<int> seq(n); for (int i = 0; i < n; ++i) { cin >> seq[i]; } vector<int> prev; prev.push_back(0); for (int i = 0; i <= n; ++i) { prev.push_back(prev[i] + seq[i]); } vector<int> b; for (int i = 0; i < n; ++i) { for (int j = i; j < n; ++j) { if (i == j) { b.push_back(seq[i]); } else { b.push_back(prev[j + 1] - prev[i]); } } } vector<int> P; vector<int> N; for (auto el: b) { if (el >= 0) { P.push_back(el); } else { N.push_back(el); } } std::sort(P.begin(), P.end()); std::sort(N.begin(), N.end(), greater<>()); tsl::hopscotch_map<int, pair<int, int>> HTP; tsl::hopscotch_map<int, pair<int, int>> HTN; for (int i = 0; i < P.size(); ++i) { auto cached = HTP.find(P[i]); if (cached == HTP.end()) {HTP[P[i]].second = 1;HTP[P[i]].first = -1;} else {HTP[P[i]].second++;} } for (int i = 0; i < N.size(); ++i) { auto cached = HTN.find(N[i]); if (cached == HTN.end()) {HTN[N[i]].second = 1;HTN[N[i]].first = -1;} else {HTN[N[i]].second++;} } P.erase(unique(P.begin(), P.end()), P.end()); N.erase(unique(N.begin(), N.end()), N.end()); for (int i = 0; i < P.size(); ++i) { if (HTP[P[i]].first == -1) { HTP[P[i]].first = i; } } for (int i = 0; i < N.size(); ++i) { if (HTN[N[i]].first == -1) { HTN[N[i]].first = i; } } long long res = 0; for (int i = 0; i < N.size(); ++i) { int a = N[i]; for (int j = 0; j < P.size(); ++j) { int b = P[j]; int c = -(a + b); if (c < b) { break; } if (HTP[c].first != -1) { if (b == c && HTP[c].second < 2) { continue; } int to_add; if (c >= 0) { if (b == c) { to_add = HTN[a].second * C[HTP[b].second][2]; } else { to_add = HTN[a].second * HTP[b].second * HTP[c].second; } res += to_add; } else { if (a == c) { to_add = HTP[b].second * C[HTN[a].second][2]; } else { to_add = HTN[a].second * HTP[b].second * HTN[c].second; } res += to_add; } } } } for (int i = 0; i < P.size(); ++i) { int a = P[i]; for (int j = 0; j < N.size(); ++j) { int b = N[j]; int c = -(a + b); if (c > b) { break; } if (HTN[c].first != -1) { if (b == c && HTN[c].second < 2) { continue; } int to_add; if (c >= 0) { if (a == c) { to_add = HTN[b].second * C[HTP[a].second][2]; } else { to_add = HTP[a].second * HTN[b].second * HTP[c].second; } res += to_add; } else { if (b == c) { to_add = HTP[a].second * C[HTN[b].second][2]; } else { to_add = HTP[a].second * HTN[b].second * HTN[c].second; } res += to_add; } } } } cout << res + (HTP[0].second * (HTP[0].second - 2) * (HTP[0].second - 1)) / 6 << "\n"; } |