1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
#include "dzilib.h"
#include <bits/stdc++.h>
#include <chrono>
using namespace std;
#define _upgrade ios_base::sync_with_stdio(0), cout.setf(ios::fixed), cout.precision(10), cin.tie(0), cout.tie(0);
#define rep(i, n) for (int i = 0; i < (n); ++i)
#define all(c) (c).begin(), (c).end()
#define sz(X) (int)((X).size())
#ifdef LOCAL
ostream &operator<<(ostream &out, string str) {
   for (char c : str)
      out << c;
   return out;
}
template <class L, class R> ostream &operator<<(ostream &out, pair<L, R> p) { return out << "(" << p.st << ", " << p.nd << ")"; }
template <class L, class R, class S> ostream &operator<<(ostream &out, tuple<L, R, S> p) {
   auto &[a, b, c] = p;
   return out << "(" << a << ", " << b << ", " << c << ")";
}
template <class T> auto operator<<(ostream &out, T a) -> decltype(a.begin(), out) {
   out << '{';
   for (auto it = a.begin(); it != a.end(); it = next(it))
      out << (it != a.begin() ? ", " : "") << *it;
   return out << '}';
}
void dump() { cerr << "\n"; }
template <class T, class... Ts> void dump(T a, Ts... x) {
   cerr << a << ", ";
   dump(x...);
}
#define debug(...) cerr << "[" #__VA_ARGS__ "]: ", dump(__VA_ARGS__)
#else
#define debug(...) 42
#endif
typedef unsigned long long ull;
#define int long long
typedef long long ll;

// Source: https://judge.yosupo.jp/submission/189742
namespace FACTOR {

   // ---- gcd ----

   uint64_t gcd_stein_impl(uint64_t x, uint64_t y) {
      if (x == y) {
         return x;
      }
      const uint64_t a = y - x;
      const uint64_t b = x - y;
      const int n = __builtin_ctzll(b);
      const uint64_t s = x < y ? a : b;
      const uint64_t t = x < y ? x : y;
      return gcd_stein_impl(s >> n, t);
   }

   uint64_t gcd_stein(uint64_t x, uint64_t y) {
      if (x == 0) {
         return y;
      }
      if (y == 0) {
         return x;
      }
      const int n = __builtin_ctzll(x);
      const int m = __builtin_ctzll(y);
      return gcd_stein_impl(x >> n, y >> m) << (n < m ? n : m);
   }

   // ---- is_prime ----

   uint64_t mod_pow(uint64_t x, uint64_t y, uint64_t mod) {
      uint64_t ret = 1;
      uint64_t acc = x;
      for (; y; y >>= 1) {
         if (y & 1) {
            ret = __uint128_t(ret) * acc % mod;
         }
         acc = __uint128_t(acc) * acc % mod;
      }
      return ret;
   }

   bool miller_rabin(uint64_t n, const std::initializer_list<uint64_t> &as) {
      return std::all_of(as.begin(), as.end(), [n](uint64_t a) {
         if (n <= a) {
            return true;
         }

         int e = __builtin_ctzll(n - 1);
         uint64_t z = mod_pow(a, (n - 1) >> e, n);
         if (z == 1 || z == n - 1) {
            return true;
         }

         while (--e) {
            z = __uint128_t(z) * z % n;
            if (z == 1) {
               return false;
            }
            if (z == n - 1) {
               return true;
            }
         }

         return false;
      });
   }

   bool is_prime(uint64_t n) {
      if (n == 2) {
         return true;
      }
      if (n % 2 == 0) {
         return false;
      }
      if (n < 4759123141) {
         return miller_rabin(n, {2, 7, 61});
      }
      return miller_rabin(n, {2, 325, 9375, 28178, 450775, 9780504, 1795265022});
   }

   // ---- Montgomery ----

   class Montgomery {
      uint64_t mod;
      uint64_t R;

    public:
      Montgomery(uint64_t n) : mod(n), R(n) {
         for (size_t i = 0; i < 5; ++i) {
            R *= 2 - mod * R;
         }
      }

      uint64_t fma(uint64_t a, uint64_t b, uint64_t c) const {
         const __uint128_t d = __uint128_t(a) * b;
         const uint64_t e = c + mod + (d >> 64);
         const uint64_t f = uint64_t(d) * R;
         const uint64_t g = (__uint128_t(f) * mod) >> 64;
         return e - g;
      }

      uint64_t mul(uint64_t a, uint64_t b) const { return fma(a, b, 0); }
   };

   // ---- Pollard's rho algorithm ----

   uint64_t pollard_rho(uint64_t n) {
      if (n % 2 == 0) {
         return 2;
      }
      const Montgomery m(n);

      constexpr uint64_t C1 = 1;
      constexpr uint64_t C2 = 2;
      constexpr uint64_t M = 512;

      uint64_t Z1 = 1;
      uint64_t Z2 = 2;
   retry:
      uint64_t z1 = Z1;
      uint64_t z2 = Z2;
      for (size_t k = M;; k *= 2) {
         const uint64_t x1 = z1 + n;
         const uint64_t x2 = z2 + n;
         for (size_t j = 0; j < k; j += M) {
            const uint64_t y1 = z1;
            const uint64_t y2 = z2;

            uint64_t q1 = 1;
            uint64_t q2 = 2;
            z1 = m.fma(z1, z1, C1);
            z2 = m.fma(z2, z2, C2);
            for (size_t i = 0; i < M; ++i) {
               const uint64_t t1 = x1 - z1;
               const uint64_t t2 = x2 - z2;
               z1 = m.fma(z1, z1, C1);
               z2 = m.fma(z2, z2, C2);
               q1 = m.mul(q1, t1);
               q2 = m.mul(q2, t2);
            }
            q1 = m.mul(q1, x1 - z1);
            q2 = m.mul(q2, x2 - z2);

            const uint64_t q3 = m.mul(q1, q2);
            const uint64_t g3 = gcd_stein(n, q3);
            if (g3 == 1) {
               continue;
            }
            if (g3 != n) {
               return g3;
            }

            const uint64_t g1 = gcd_stein(n, q1);
            const uint64_t g2 = gcd_stein(n, q2);

            const uint64_t C = g1 != 1 ? C1 : C2;
            const uint64_t x = g1 != 1 ? x1 : x2;
            uint64_t z = g1 != 1 ? y1 : y2;
            uint64_t g = g1 != 1 ? g1 : g2;

            if (g == n) {
               do {
                  z = m.fma(z, z, C);
                  g = gcd_stein(n, x - z);
               } while (g == 1);
            }
            if (g != n) {
               return g;
            }

            Z1 += 2;
            Z2 += 2;
            goto retry;
         }
      }
   }

   void factorize_impl(uint64_t n, std::vector<uint64_t> &ret) {
      if (n <= 1) {
         return;
      }
      if (is_prime(n)) {
         ret.push_back(n);
         return;
      }

      const uint64_t p = pollard_rho(n);

      factorize_impl(p, ret);
      factorize_impl(n / p, ret);
   }

   std::vector<uint64_t> factorize(uint64_t n) {
      std::vector<uint64_t> ret;
      factorize_impl(n, ret);
      std::sort(ret.begin(), ret.end());
      return ret;
   }

   int d0(uint64_t n) {
      auto D = factorize(n);
      std::map<int, int> M;
      for (auto d : D)
         M[d]++;
      int res = 1;
      for (auto [_, cnt] : M)
         res *= (cnt + 1);
      return res;
   }

} // namespace FACTOR

#define int long long
namespace RNG {
   mt19937_64 gen(chrono::steady_clock::now().time_since_epoch().count());
   uniform_int_distribution<ull> distr(0, 1e18);
   auto my_rand = bind(distr, gen); // my_rand() zwraca teraz liczbe z przedzialu [a, b]

   ull get_rand(ull C) { return my_rand() % C; }
   ull get_rand(ull C, ull S, int k) { return (get_rand(C >> k) << k) ^ S; }

} // namespace RNG

int cnt = 0;
map<ll, ll> M;
ll ask(ll c, int C) {
   assert(c <= C);
   if (M.count(c))
      return M[c];
   cnt++;
   return M[c] = Ask(c);
   // FACTOR::d0(hidden_x + c);
}

set<int> dont_need = {30, 36, 40, 42, 46, 52};
multiset<int> more = {2, 2, 2, 2, 2, 2, 4, 4, 6, 9, 9, 13, 14, 19, 19, 27, 29, 39, 44};
vector<int> rel = {2, 4, 6, 9, 10, 12, 13, 14, 16, 18, 19, 20, 21, 22, 24, 25, 27, 28, 29, 30, 32, 33, 34, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 48, 49, 50, 51, 52, 54};

bool verify(int c, int pw, int C) {
   auto good = [pw, C](int c) { return ask(c, C) % (pw + 1) == 0; };
   assert(good(c));
   const int level = 1 + more.count(pw) - dont_need.count(pw) + (C < 1e16);
   rep(i, level) if (!good(c + (i + 1) * (1LL << (pw + 1)))) return false;
   return true;
}

int get(int c, int d0, int cur, int C) {
   for (int i : rel)
      if (i > cur and d0 % (i + 1) == 0 and (4ll << i) < C) {
         if (verify(c, i, C))
            return i;
         else
            return -1;
      }
   return -1;
}

bool check(int x) {
   for (auto [c, d] : M)
      if (FACTOR::d0(x + c) != d)
         return false;
   return true;
}

vector<int> check(vector<int> X) {
   vector<int> good;
   for (auto x : X)
      if (check(x))
         good.push_back(x);

   //    debug(good);
   assert(sz(good));
   return good;
}

int check(int N, int t, int pw) {
   const int LIMIT = 100;
   int L = (1ll << pw) - 1;
   int x = (1ll << pw) - (t & L);
   assert(x <= N);
   vector<int> X = {x};
   while (sz(X) <= LIMIT and X.back() <= N)
      X.push_back(X.back() + (1ll << pw));
   //    debug(X);
   if (sz(X) > LIMIT)
      return -1;
   auto res = check(X);
   if (sz(res) == 1)
      return res[0];
   else
      return -1;
}

int jazda(int N, int C) {
   M.clear();
   auto t = RNG::get_rand(C / 5);
   int pw = -1;
   int res = -1;
   debug("START", N, C);
   while (res == -1) {
      if ((1ll << pw) > N * 2)
         assert(false);

      int incr = pw == -1 ? 1 : (2ll << pw);
      int cur = pw;
      pw = -1;
      while (pw == -1) {
         t += incr;
         auto d0 = ask(t, C);
         pw = get(t, d0, cur, C);
         debug(d0, pw);
      }
      debug(t, pw);

      res = check(N, t, pw);
      t += (1ll << pw);
   }
   return res;
}

int32_t main() {
   int T = GetT();
   int N = GetN();
   int _Q = GetQ();
   int C = GetC();
   while (T--) {
      M.clear();
      auto res = jazda(N, C);
      Answer(res);
   }
}