#include <bits/stdc++.h> #include "dzilib.h" #define ll long long #define fors(u, n, s) for(ll u = (s); u < (n); u++) #define foru(u, n) fors(u, n, 0) #define vec vector #define pb push_back #define f first #define s second #define ir(a, b, x) (((a) <= (x)) && ((x) <= (b))) #define pint pair<int, int> #define us unsigned using namespace std; long long numberOfDivisors(long long num) { long long total = 1; for (int i = 2; (long long)i * i <= num; i++) { if (num % i == 0) { int e = 0; do { e++; num /= i; } while (num % i == 0); total *= e + 1; } } if (num > 1) { total *= 2; } return total; } const ll N = 1e14; ll t, n, q, c; bool possibly(int x, int p){ fors(i, 50, p){ if(x%p==0) return true; } return false; } int cnt = 0; map<ll, int> mem; ll random_offset; int ask(ll x){ x+=random_offset; if(mem.find(x) != mem.end()) return mem[x]; cnt ++; mem[x] = Ask(x); return mem[x]; } int find_pow_of_two(int p, ll start, ll step){ ll d = 1LL<<p; ll m = d/step; vec<bool> possible_mod(m, true); vec<int> last_seen(m, 0); for(int i = 0; true; i++){ if(!possible_mod[i%m]) continue; ll ans = ask(start+step*i); if(numberOfDivisors(ans) == 2) { } if(ans%(p+1)==0){ if(numberOfDivisors(ans/(p+1)) == 2) { } last_seen[i%m]=0; }else{ last_seen[i%m]++; if(last_seen[i%m]==2) possible_mod[i%m]=false; } int sum = 0; for(auto i : possible_mod) sum += i; if(sum == 1) break; } foru(i, d) if(possible_mod[i]) { start += step*i; while(start>=step*m) start -= step*m; return start; } } vec<int> p = {3, 5, 7, 9}; vec<int> dividors(int x){ vec<int> out; fors(i, x, 1) if(x%i==0) out.pb(i); return out; } void solve(){ mem.clear(); foru(_i, 10){ random_offset += ((ll)rand())*rand(); random_offset %= n/2; } ll x = 0; x = find_pow_of_two(p[0]-1, x, 1); for(int i = 1; i < p.size(); i++){ x = find_pow_of_two(p[i]-1, x, 1LL<<(p[i-1]-1)); } int current_power = p[p.size()-1]-1; while(n+random_offset+x >= 2*(1L<<current_power)){ x += (1LL<<current_power); vec<int> divs = dividors(ask(x)); foru(i, divs.size()){ if (divs[i] >= current_power+1){ if(divs[i] == current_power + 1) break; current_power = divs[i]-1; while(x >= (1LL<<current_power)) x-=(1LL<<current_power); break; } } } Answer((1LL<<current_power)-x-random_offset); } int main(){ t=GetT(); n=GetN(); q=GetQ(); c=GetC(); foru(_i, t) solve(); }
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 | #include <bits/stdc++.h> #include "dzilib.h" #define ll long long #define fors(u, n, s) for(ll u = (s); u < (n); u++) #define foru(u, n) fors(u, n, 0) #define vec vector #define pb push_back #define f first #define s second #define ir(a, b, x) (((a) <= (x)) && ((x) <= (b))) #define pint pair<int, int> #define us unsigned using namespace std; long long numberOfDivisors(long long num) { long long total = 1; for (int i = 2; (long long)i * i <= num; i++) { if (num % i == 0) { int e = 0; do { e++; num /= i; } while (num % i == 0); total *= e + 1; } } if (num > 1) { total *= 2; } return total; } const ll N = 1e14; ll t, n, q, c; bool possibly(int x, int p){ fors(i, 50, p){ if(x%p==0) return true; } return false; } int cnt = 0; map<ll, int> mem; ll random_offset; int ask(ll x){ x+=random_offset; if(mem.find(x) != mem.end()) return mem[x]; cnt ++; mem[x] = Ask(x); return mem[x]; } int find_pow_of_two(int p, ll start, ll step){ ll d = 1LL<<p; ll m = d/step; vec<bool> possible_mod(m, true); vec<int> last_seen(m, 0); for(int i = 0; true; i++){ if(!possible_mod[i%m]) continue; ll ans = ask(start+step*i); if(numberOfDivisors(ans) == 2) { } if(ans%(p+1)==0){ if(numberOfDivisors(ans/(p+1)) == 2) { } last_seen[i%m]=0; }else{ last_seen[i%m]++; if(last_seen[i%m]==2) possible_mod[i%m]=false; } int sum = 0; for(auto i : possible_mod) sum += i; if(sum == 1) break; } foru(i, d) if(possible_mod[i]) { start += step*i; while(start>=step*m) start -= step*m; return start; } } vec<int> p = {3, 5, 7, 9}; vec<int> dividors(int x){ vec<int> out; fors(i, x, 1) if(x%i==0) out.pb(i); return out; } void solve(){ mem.clear(); foru(_i, 10){ random_offset += ((ll)rand())*rand(); random_offset %= n/2; } ll x = 0; x = find_pow_of_two(p[0]-1, x, 1); for(int i = 1; i < p.size(); i++){ x = find_pow_of_two(p[i]-1, x, 1LL<<(p[i-1]-1)); } int current_power = p[p.size()-1]-1; while(n+random_offset+x >= 2*(1L<<current_power)){ x += (1LL<<current_power); vec<int> divs = dividors(ask(x)); foru(i, divs.size()){ if (divs[i] >= current_power+1){ if(divs[i] == current_power + 1) break; current_power = divs[i]-1; while(x >= (1LL<<current_power)) x-=(1LL<<current_power); break; } } } Answer((1LL<<current_power)-x-random_offset); } int main(){ t=GetT(); n=GetN(); q=GetQ(); c=GetC(); foru(_i, t) solve(); } |