#include <iostream> #include <unordered_set> #include <vector> using namespace std; const long long MOD = 1'000'000'000 + 7; vector<int> factorial, inverse; int ExpMod(int x, int n, int p) { // x ^ n % p long long res = 1; while(n > 0) { if(n & 1) res = ((long long)x * res) % p; x = ((long long)x * (long long)x) % p; n /= 2; } return res % MOD; } int binom(int n, int k) { return ((((long long)factorial[n] * inverse[k]) % MOD) * (long long)inverse[n-k]) % MOD; } struct Tree { vector<int> value; vector<int> to_set; Tree(int size) : value(size, -1), to_set(size, -1) { }; long long get_value(int pos) { return value[pos + value.size() / 2]; } int get(int pos, int curr_b, int curr_e, int pos_to_get) { if (curr_b == curr_e) { if (to_set[pos] != -1) value[pos] = to_set[pos]; return value[pos]; } if (to_set[pos] != -1) { to_set[pos << 1] = to_set[pos]; to_set[(pos << 1) + 1] = to_set[pos]; } if (pos_to_get <= (curr_e + curr_b) / 2) return get(pos << 1, curr_b, (curr_e + curr_b) / 2, pos_to_get); return get((pos << 1) + 1, (curr_e + curr_b) / 2 + 1, curr_e, pos_to_get); } void set_value(int pos, int value_to_set, int curr_b, int curr_e, int range_b, int range_e) { if(curr_b == curr_e) { if (to_set[pos] != -1) value[pos] = to_set[pos]; to_set[pos] = -1; if (curr_b >= range_b && curr_e <= range_e) value[pos] = value_to_set; return; } if (to_set[pos] != -1) { to_set[pos << 1] = to_set[pos]; to_set[(pos << 1) + 1] = to_set[pos]; to_set[pos] = -1; } if (curr_b >= range_b && curr_e <= range_e) { to_set[pos] = value_to_set; return; } else if (curr_e < range_b || curr_b > range_e) return; set_value(pos << 1, value_to_set, curr_b, (curr_e + curr_b) / 2, range_b, range_e); set_value((pos << 1) + 1, value_to_set, (curr_e + curr_b) / 2 + 1 , curr_e, range_b, range_e); } }; int main() { ios::sync_with_stdio(0); cin.tie(0); cout.tie(0); int n; cin >> n; vector<pair<int, int>> shelf(n); int pow = 1; while (pow < 2 * n) { pow *= 2; } Tree t(pow * 2); for (int i = 0; i < n; i++) { int a, b; cin >> a >> b; if (b - a > 1) t.set_value(1, i, 1, pow, a + 1, b - 1); shelf[i].first = t.get(1, 1, pow, a); shelf[i].second = t.get(1, 1, pow, b); } vector<unordered_set<int>> paths(n); vector<long long> counts(n); for (int i = n - 1; i >= 0; i--) { if (shelf[i].first != -1) { paths[shelf[i].first].insert(i); for (auto it : paths[i]) paths[shelf[i].first].insert(it); } if (shelf[i].second != -1) { paths[shelf[i].second].insert(i); for (auto it : paths[i]) paths[shelf[i].second].insert(it); } counts[i] = paths[i].size(); } factorial.resize(2 * n + 1, 1); inverse.resize(2 * n + 1, 1); for (int i = 1; i < 2 * n + 1; i++) { factorial[i] = (((long long)factorial[i - 1] * i)) % MOD; inverse[i] = ExpMod(factorial[i], MOD - 2, MOD); } long long res = 0; for (int i = 0; i < n; i++) { int k = counts[i]; long long a = binom(n, k + 1) - binom(k, k + 1); a = (a * factorial[n - k - 1]) % MOD; a = (a * factorial[k]) % MOD; res = (res + a) % MOD; } cout << (res * ExpMod(factorial[n], MOD - 2, MOD)) % MOD << endl; return 0; }
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 | #include <iostream> #include <unordered_set> #include <vector> using namespace std; const long long MOD = 1'000'000'000 + 7; vector<int> factorial, inverse; int ExpMod(int x, int n, int p) { // x ^ n % p long long res = 1; while(n > 0) { if(n & 1) res = ((long long)x * res) % p; x = ((long long)x * (long long)x) % p; n /= 2; } return res % MOD; } int binom(int n, int k) { return ((((long long)factorial[n] * inverse[k]) % MOD) * (long long)inverse[n-k]) % MOD; } struct Tree { vector<int> value; vector<int> to_set; Tree(int size) : value(size, -1), to_set(size, -1) { }; long long get_value(int pos) { return value[pos + value.size() / 2]; } int get(int pos, int curr_b, int curr_e, int pos_to_get) { if (curr_b == curr_e) { if (to_set[pos] != -1) value[pos] = to_set[pos]; return value[pos]; } if (to_set[pos] != -1) { to_set[pos << 1] = to_set[pos]; to_set[(pos << 1) + 1] = to_set[pos]; } if (pos_to_get <= (curr_e + curr_b) / 2) return get(pos << 1, curr_b, (curr_e + curr_b) / 2, pos_to_get); return get((pos << 1) + 1, (curr_e + curr_b) / 2 + 1, curr_e, pos_to_get); } void set_value(int pos, int value_to_set, int curr_b, int curr_e, int range_b, int range_e) { if(curr_b == curr_e) { if (to_set[pos] != -1) value[pos] = to_set[pos]; to_set[pos] = -1; if (curr_b >= range_b && curr_e <= range_e) value[pos] = value_to_set; return; } if (to_set[pos] != -1) { to_set[pos << 1] = to_set[pos]; to_set[(pos << 1) + 1] = to_set[pos]; to_set[pos] = -1; } if (curr_b >= range_b && curr_e <= range_e) { to_set[pos] = value_to_set; return; } else if (curr_e < range_b || curr_b > range_e) return; set_value(pos << 1, value_to_set, curr_b, (curr_e + curr_b) / 2, range_b, range_e); set_value((pos << 1) + 1, value_to_set, (curr_e + curr_b) / 2 + 1 , curr_e, range_b, range_e); } }; int main() { ios::sync_with_stdio(0); cin.tie(0); cout.tie(0); int n; cin >> n; vector<pair<int, int>> shelf(n); int pow = 1; while (pow < 2 * n) { pow *= 2; } Tree t(pow * 2); for (int i = 0; i < n; i++) { int a, b; cin >> a >> b; if (b - a > 1) t.set_value(1, i, 1, pow, a + 1, b - 1); shelf[i].first = t.get(1, 1, pow, a); shelf[i].second = t.get(1, 1, pow, b); } vector<unordered_set<int>> paths(n); vector<long long> counts(n); for (int i = n - 1; i >= 0; i--) { if (shelf[i].first != -1) { paths[shelf[i].first].insert(i); for (auto it : paths[i]) paths[shelf[i].first].insert(it); } if (shelf[i].second != -1) { paths[shelf[i].second].insert(i); for (auto it : paths[i]) paths[shelf[i].second].insert(it); } counts[i] = paths[i].size(); } factorial.resize(2 * n + 1, 1); inverse.resize(2 * n + 1, 1); for (int i = 1; i < 2 * n + 1; i++) { factorial[i] = (((long long)factorial[i - 1] * i)) % MOD; inverse[i] = ExpMod(factorial[i], MOD - 2, MOD); } long long res = 0; for (int i = 0; i < n; i++) { int k = counts[i]; long long a = binom(n, k + 1) - binom(k, k + 1); a = (a * factorial[n - k - 1]) % MOD; a = (a * factorial[k]) % MOD; res = (res + a) % MOD; } cout << (res * ExpMod(factorial[n], MOD - 2, MOD)) % MOD << endl; return 0; } |