1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
#include <bits/stdc++.h>

#include "dzilib.h"

using namespace std;

namespace factorize {

struct Mint {
	uint64_t n;
	static uint64_t mod, inv, r2;
	Mint() : n(0) { }
	Mint(const uint64_t &x) : n(init(x)) { }
	static uint64_t init(const uint64_t &w) { return reduce(__uint128_t(w) * r2); }
	static void set_mod(const uint64_t &m) {
		mod = inv = m;
		for(int i = 0; i < 5; i++)	inv *= 2 - inv * m;
		r2 = -__uint128_t(m) % m;
	}
	static uint64_t reduce(const __uint128_t &x) {
		uint64_t y = uint64_t(x >> 64) - uint64_t((__uint128_t(uint64_t(x) * inv) * mod) >> 64);
		return int64_t(y) < 0 ? y + mod : y;
	}
	Mint& operator+= (const Mint &x) { n += x.n - mod; if(int64_t(n) < 0) n += mod; return *this; }
	Mint& operator+ (const Mint &x) const { return Mint(*this) += x; }
	Mint& operator*= (const Mint &x) { n = reduce(__uint128_t(n) * x.n); return *this; }
	Mint& operator* (const Mint &x) const { return Mint(*this) *= x; }
	uint64_t val() const { return reduce(n); }
};

uint64_t Mint::mod, Mint::inv, Mint::r2;

bool suspect(const uint64_t &a, const uint64_t &s, uint64_t d, const uint64_t &n) {
	if(Mint::mod != n)	Mint::set_mod(n);
	Mint x(1), xx(a), o(x), m(n - 1);
	while(d > 0) {
		if(d & 1)	x *= xx;
		xx *= xx;
		d >>= 1;
	}
	if(x.n == o.n)	return true;
	for(uint r = 0; r < s; r++) {
		if(x.n == m.n)	return true;
		x *= x;
	}
	return false;
}

bool is_prime(const uint64_t &n) {
	if(n <= 1 || (n > 2 && (~n & 1)))	return false;
	uint64_t d = n - 1, s = 0;
	while(~d & 1)	s++, d >>= 1;
	static const uint64_t a_big[] = {2, 325, 9375, 28178, 450775, 9780504, 1795265022};
	static const uint64_t a_smo[] = {2, 7, 61};
	if(n <= 4759123141LL) {
		for(auto &&p : a_smo) {
			if(p >= n)	break;
			if(!suspect(p, s, d, n))	return false;
		}
	} else {
		for(auto &&p : a_big) {
			if(p >= n)	break;
			if(!suspect(p, s, d, n))	return false;
		}
	}
	return true;
}

uint64_t rho_pollard(const uint64_t &n) {
	if(~n & 1)	return 2u;
	static random_device rng;
	uniform_int_distribution<uint64_t> rr(1, n - 1);
	if(Mint::mod != n)	Mint::set_mod(n);
	for(;;) {
		uint64_t c_ = rr(rng), g = 1, r = 1, m = 500;
		Mint y(rr(rng)), xx(0), c(c_), ys(0), q(1);
		while(g == 1) {
			xx.n = y.n;
			for(uint i = 1; i <= r; i++)	y *= y, y += c;
			uint64_t k = 0; g = 1;
			while(k < r && g == 1) {
				for(uint i = 1; i <= (m > (r - k) ? (r - k) : m); i++) {
					ys.n = y.n;
					y *= y; y += c;
					uint64_t xxx = xx.val(), yyy = y.val();
					q *= Mint(xxx > yyy ? xxx - yyy : yyy - xxx);
				}
				g = __gcd<uint64_t>(q.val(), n);
				k += m;
			}
			r *= 2;
		}
		if(g == n)	g = 1;
		while(g == 1) {
			ys *= ys; ys += c;
			uint64_t xxx = xx.val(), yyy = ys.val();
			g = __gcd<uint64_t>(xxx > yyy ? xxx - yyy : yyy - xxx, n);
		}
		if(g != n && is_prime(g))	return g;
	}
	assert(69 == 420);
}

template <typename T>
vector<T> inter_factor(const T &n) {
	if(n < 2)	return { };
	if(is_prime(n))	return {n};
	T d = rho_pollard(static_cast<uint64_t>(n));
	vector<T> l = inter_factor(d), r = inter_factor(n / d);
	l.insert(l.end(), r.begin(), r.end());
	return l;
}

template <typename T>
vector<T> factor(T n) {
	vector<T> f1;
	for(uint i = 2; i <= 67; i += (i & 1) + 1)
		while(n % i == 0)	f1.push_back(i), n /= i;
	vector<T> f2 = inter_factor(n);
	sort(f2.begin(), f2.end());
	f1.insert(f1.end(), f2.begin(), f2.end());
	return f1;
}

template <typename T>
int count_divisors(T n) {
	assert(n > 0);

	if (n == 1)
		return 1;

	vector<T> f = factor(n);
	
	int ans = 1, cur = 1;

	for (int i = 1; i < (int) f.size(); i++) {
		if (f[i] != f[i - 1]) {
			ans *= cur + 1;
			cur = 0;
		}
		
		cur++;
	}

	ans *= cur + 1;

	return ans;
}

}; // factorize
using factorize::is_prime;
using factorize::factor;
using factorize::count_divisors;

typedef long long LL;

mt19937_64 rng(2137);

LL randint(LL a, LL b) {
	return uniform_int_distribution<LL>(a, b)(rng);
}

const int S = 1000000;

bitset<S> sieve;
vector<LL> primes;

void make_sieve() {
	sieve.set();
	sieve[0] = sieve[1] = false;

	for (int i = 2; i * i < S; i++) {
		if (sieve[i]) {
			for (int j = i * i; j < S; j += i)
				sieve.reset(j);
		}
	}

	for (int i = 2; i < S; i++)
		if (sieve[i])
			primes.push_back(i);
}

namespace subtask12 {

const int N = 1000000 + 200;

int cnt[N];

void solve() {
	for (int i = 1; i < N; i++)
		for (int j = i; j < N; j += i)
			cnt[j]++;

	map<uint64_t, int> all;
	for (int i = 1; i + 50 < N; i++) {
		uint64_t h = 0;

		for (int j = 0; j < 50; j++) {
			h *= 32141;
			h += cnt[i + j];
		}

		if (all.count(h)) {
			assert(false);
		}

		all[h] = i;
	}

	int t = GetT();
	
	while (t--) {
		uint64_t h = 0;

		for (int j = 0; j < 50; j++) {
			h *= 32141;
			h += Ask(j);
		}

		Answer(all[h]);
	}
}

};

const LL inf = 1e18L;

LL mul(LL a, LL b) {
	if (b == 0LL)
		return 0LL;
	if (a > inf / b)
		return inf;
	return a * b;
}

map<LL, LL> cache;

LL ask(LL y) {
	if (cache.count(y))
		return cache[y];
	return cache[y] = Ask(y);
}

namespace subtask3 {

void solve() {
	make_sieve();

	// const LL TRUE_N = 100'000'000'000'000LL;
	const LL TRUE_N = 1'000'000'000LL;

	// const LL C = 100'000'000'000'000'000LL;
	const LL C = 1'000'000'000'000LL;

	// const LL N = 100'001'000'000'000LL;
	const LL N = 2 * 1'000'000'000LL;
	
	const int T = 100;
	const int CHECK = 40;
	const int BRUTE = 1000000;

	int t = GetT();

	while (t--) {
		cache.clear();

		// number has to have lots of ones in binary
		LL shift = randint(1LL, 1'000'000'000LL);

		auto common_divisor = [&](LL z, LL fail_at) {
			assert(shift + T * z <= C);

			for (LL d = 1; d <= T; d++)
				if (ask(shift + d * z) == fail_at)
					return false;
			return true;
		};

		int cnt = 0;

		LL y = 1;
		for (int k = 1; y <= N; k++) {
			y *= 2;

			cnt++;
			if (common_divisor(y, 2 * k) == false) {
				shift += y / 2;
			}
		}
		
		Answer(y - shift);
	}
}

}

int main() {
		
	int q = GetQ();
	long long c = GetC();
	long long n = GetN();

	if (n <= 1000000) {
		subtask12::solve();
		return 0;
	}
	
	if (n <= 1'000'000'000) {
		subtask3::solve();
		return 0;
	}

	assert(false);
	
	return 0;
}