#include <bits/stdc++.h> #pragma GCC optimize("O3") #pragma GCC optimize("unroll-loops") using namespace std; #define PB push_back #define LL long long #define int LL #define FOR(i,a,b) for (int i = (a); i <= (b); i++) #define FORD(i,a,b) for (int i = (a); i >= (b); i--) #define REP(i,n) FOR(i,0,(int)(n)-1) #define RE(i,n) FOR(i,1,n) #define st first #define nd second #define ALL(x) (x).begin(), (x).end() #define SZ(x) ((int)(x).size()) #define VI vector<int> #define PII pair<int,int> #define LD long double template<class T> ostream &operator<<(ostream &os, vector<T> V){ os<<"[";for(auto vv:V)os<<vv<<",";return os<<"]"; } template<class L, class R> ostream &operator<<(ostream &os, pair<L,R> P) { return os << "(" << P.st << "," << P.nd << ")"; } template<class C> void mini(C& a4, C b4) { a4 = min(a4, b4); } template<class C> void maxi(C& a4, C b4) { a4 = max(a4, b4); } template<class TH> void _dbg(const char *sdbg, TH h){cerr<<sdbg<<"="<<h<<"\n";} template<class TH, class... TA> void _dbg(const char *sdbg, TH h, TA... a) { while(*sdbg!=',')cerr<<*sdbg++;cerr<<"="<<h<<","; _dbg(sdbg+1, a...); } #ifdef LOCAL #define debug(...) _dbg(#__VA_ARGS__, __VA_ARGS__) #else #define debug(...) (__VA_ARGS__) #define cerr if(0)cout #endif /*Precision error max_ans/1e15 (2.5e18) for (long) doubles. So integer rounding works for doubles with answers 0.5*1e15, e.g. for sizes 2^20 and RANDOM positive integers up to 45k. Those values assume DBL_MANT_DIG=53 and LDBL_MANT_DIG=64. For input in [0, M], you can decrease everything by M/2. If there are many small vectors, uncomment "BRUTE FORCE".*/ const int mod = 1e9 + 7; typedef double ld; // 'long double' is 2.2 times slower struct C { ld real, imag; C operator * (const C & he) const { return C{real * he.real - imag * he.imag, real * he.imag + imag * he.real}; } void operator += (const C & he) { real += he.real; imag += he.imag; } }; void dft(vector<C> & a, bool rev) { const int n = a.size(); for(int i = 1, k = 0; i < n; ++i) { for(int bit = n / 2; (k ^= bit) < bit; bit /= 2);;; if(i < k) swap(a[i], a[k]); } for(int len = 1, who = 0; len < n; len *= 2, ++who) { static vector<C> t[30]; vector<C> & om = t[who]; if(om.empty()) { om.resize(len); const ld ang = 2 * acosl(0) / len; REP(i, len) om[i] = i%2 || !who ? C{cos(i*ang), sin(i*ang)} : t[who-1][i/2]; } for(int i = 0; i < n; i += 2 * len) REP(k, len) { const C x = a[i+k], y = a[i+k+len] * C{om[k].real, om[k].imag * (rev ? -1 : 1)}; a[i+k] += y; a[i+k+len] = C{x.real - y.real, x.imag - y.imag}; } } if(rev) REP(i, n) a[i].real /= n; } template<typename T>vector<T> multiply(const vector<T> & a, const vector<T> & b, bool split = false) { if(a.empty() || b.empty()) return {}; int n = a.size() + b.size(); vector<T> ans(n - 1); // /* if(min(a.size(),b.size()) < 190) { // BRUTE FORCE // REP(i, a.size()) REP(j, b.size()) ans[i+j] += a[i]*b[j]; // return ans; } */ while(n&(n-1)) ++n; // http://codeforces.com/blog/entry/48417 auto speed = [&](const vector<C> & w, int i, int k) { int j = i ? n - i : 0, r = k ? -1 : 1; return C{w[i].real + w[j].real * r, w[i].imag - w[j].imag * r} * (k ? C{0, -0.5} : C{0.5, 0}); }; if(!split) { // standard fast version vector<C> in(n), done(n); REP(i, a.size()) in[i].real = a[i]; REP(i, b.size()) in[i].imag = b[i]; dft(in, false); REP(i, n) done[i] = speed(in, i, 0) * speed(in, i, 1); dft(done, true); REP(i, ans.size()) ans[i] = is_integral<T>::value ? llround(done[i].real) : done[i].real; //REP(i,ans.size())err=max(err,abs(done[i].real-ans[i])); } else { const int M = 1 << 15; vector <C> t[2]; for (int x = 0; x < 2; ++x) { t[x].resize(n); const vector <T> & in = (x ? b : a); for (int i = 0; i < (int) in.size(); ++i) t[x][i] = C{ld(in[i] % M), ld(in[i] / M)}; dft(t[x], false); } vector <C> d1(n), d2(n); for (int i = 0; i < n; ++i) { d1[i] += speed(t[0], i, 0) * speed(t[1], i, 0); d1[i] += speed(t[0], i, 1) * speed(t[1], i, 1) * C{0, 1}; d2[i] += speed(t[0], i, 0) * speed(t[1], i, 1); d2[i] += speed(t[0], i, 1) * speed(t[1], i, 0); } dft(d1, true); dft(d2, true); for (int i = 0; i < n; ++i) { d1[i].imag /= n; } for (int i = 0; i < (int) ans.size(); ++i) { ans[i] = (llround(d1[i].real) + llround(d2[i].real) % mod * M + llround(d1[i].imag) % mod * (M * M)) % mod; } } return ans; } int real2rep(int x, int min_value){ return x - min_value; } int rep2real(int x, int min_value){ return x + min_value; } int brute_force(VI a){ unordered_map<int, int> cnt; REP(i, SZ(a)){ int sum = 0; FOR(j, i, SZ(a) - 1){ sum += a[j]; cnt[sum]++; } } int res = 0; for(PII p1 : cnt){ for(PII p2: cnt){ int val = -(p1.st + p2.st); if (cnt.count(val)){ res += p1.nd * p2.nd * cnt[val]; } } } for(PII p: cnt){ int val = -2 * p.st; if (cnt.count(val)){ res -= p.nd * cnt[val] * 3; } } res += cnt[0] * 2; res /= 6; return res; } int32_t main() { ios_base::sync_with_stdio(0); cin.tie(0); cout << fixed << setprecision(11); cerr << fixed << setprecision(6); int n; cin >> n; VI a(n); REP(i, n) cin >> a[i]; int max_abs_val = max(abs(*min_element(ALL(a))), abs(*max_element(ALL(a)))); int single_min_bound = -max_abs_val * n; VI cnt(max_abs_val * n * 2 + 1, 0); if(SZ(cnt) > 5e5){ debug("BRUTE"); cout << brute_force(a) << "\n"; return 0; } REP(i, n){ int sum = real2rep(0, single_min_bound); FOR(j, i, n - 1){ sum += a[j]; cnt[sum]++; } } REP(i, SZ(cnt)){ if(cnt[i]){ int real_i = rep2real(i, single_min_bound); debug(i, real_i, cnt[i]); } } // FFT fft(SZ(cnt)); debug(SZ(cnt)); VI res = multiply(cnt, cnt); int min_bound = 2 * single_min_bound; debug("FFT result"); REP(i, SZ(res)){ if(res[i]){ int real_i = rep2real(i, min_bound); debug(i, real_i, res[i]); } } int ans = 0; FOR(i, real2rep(single_min_bound, min_bound), real2rep(-single_min_bound, min_bound)){ // i is representation int val = rep2real(i, min_bound); int seeked_val = real2rep(-val, single_min_bound); ans += res[i] * cnt[seeked_val]; } debug("unordered triplets"); debug(ans); REP(i, SZ(cnt)){ int real_val = rep2real(i, single_min_bound); int double_val = 2 * real_val; int double_val_rep = real2rep(double_val, single_min_bound); if (double_val_rep < 0 || double_val_rep >= SZ(cnt)) continue; ans -= cnt[i] * cnt[real2rep(-double_val, single_min_bound)] * 3; } ans += cnt[real2rep(0, single_min_bound)] * 2; ans /= 6; cout << ans << "\n"; }
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 | #include <bits/stdc++.h> #pragma GCC optimize("O3") #pragma GCC optimize("unroll-loops") using namespace std; #define PB push_back #define LL long long #define int LL #define FOR(i,a,b) for (int i = (a); i <= (b); i++) #define FORD(i,a,b) for (int i = (a); i >= (b); i--) #define REP(i,n) FOR(i,0,(int)(n)-1) #define RE(i,n) FOR(i,1,n) #define st first #define nd second #define ALL(x) (x).begin(), (x).end() #define SZ(x) ((int)(x).size()) #define VI vector<int> #define PII pair<int,int> #define LD long double template<class T> ostream &operator<<(ostream &os, vector<T> V){ os<<"[";for(auto vv:V)os<<vv<<",";return os<<"]"; } template<class L, class R> ostream &operator<<(ostream &os, pair<L,R> P) { return os << "(" << P.st << "," << P.nd << ")"; } template<class C> void mini(C& a4, C b4) { a4 = min(a4, b4); } template<class C> void maxi(C& a4, C b4) { a4 = max(a4, b4); } template<class TH> void _dbg(const char *sdbg, TH h){cerr<<sdbg<<"="<<h<<"\n";} template<class TH, class... TA> void _dbg(const char *sdbg, TH h, TA... a) { while(*sdbg!=',')cerr<<*sdbg++;cerr<<"="<<h<<","; _dbg(sdbg+1, a...); } #ifdef LOCAL #define debug(...) _dbg(#__VA_ARGS__, __VA_ARGS__) #else #define debug(...) (__VA_ARGS__) #define cerr if(0)cout #endif /*Precision error max_ans/1e15 (2.5e18) for (long) doubles. So integer rounding works for doubles with answers 0.5*1e15, e.g. for sizes 2^20 and RANDOM positive integers up to 45k. Those values assume DBL_MANT_DIG=53 and LDBL_MANT_DIG=64. For input in [0, M], you can decrease everything by M/2. If there are many small vectors, uncomment "BRUTE FORCE".*/ const int mod = 1e9 + 7; typedef double ld; // 'long double' is 2.2 times slower struct C { ld real, imag; C operator * (const C & he) const { return C{real * he.real - imag * he.imag, real * he.imag + imag * he.real}; } void operator += (const C & he) { real += he.real; imag += he.imag; } }; void dft(vector<C> & a, bool rev) { const int n = a.size(); for(int i = 1, k = 0; i < n; ++i) { for(int bit = n / 2; (k ^= bit) < bit; bit /= 2);;; if(i < k) swap(a[i], a[k]); } for(int len = 1, who = 0; len < n; len *= 2, ++who) { static vector<C> t[30]; vector<C> & om = t[who]; if(om.empty()) { om.resize(len); const ld ang = 2 * acosl(0) / len; REP(i, len) om[i] = i%2 || !who ? C{cos(i*ang), sin(i*ang)} : t[who-1][i/2]; } for(int i = 0; i < n; i += 2 * len) REP(k, len) { const C x = a[i+k], y = a[i+k+len] * C{om[k].real, om[k].imag * (rev ? -1 : 1)}; a[i+k] += y; a[i+k+len] = C{x.real - y.real, x.imag - y.imag}; } } if(rev) REP(i, n) a[i].real /= n; } template<typename T>vector<T> multiply(const vector<T> & a, const vector<T> & b, bool split = false) { if(a.empty() || b.empty()) return {}; int n = a.size() + b.size(); vector<T> ans(n - 1); // /* if(min(a.size(),b.size()) < 190) { // BRUTE FORCE // REP(i, a.size()) REP(j, b.size()) ans[i+j] += a[i]*b[j]; // return ans; } */ while(n&(n-1)) ++n; // http://codeforces.com/blog/entry/48417 auto speed = [&](const vector<C> & w, int i, int k) { int j = i ? n - i : 0, r = k ? -1 : 1; return C{w[i].real + w[j].real * r, w[i].imag - w[j].imag * r} * (k ? C{0, -0.5} : C{0.5, 0}); }; if(!split) { // standard fast version vector<C> in(n), done(n); REP(i, a.size()) in[i].real = a[i]; REP(i, b.size()) in[i].imag = b[i]; dft(in, false); REP(i, n) done[i] = speed(in, i, 0) * speed(in, i, 1); dft(done, true); REP(i, ans.size()) ans[i] = is_integral<T>::value ? llround(done[i].real) : done[i].real; //REP(i,ans.size())err=max(err,abs(done[i].real-ans[i])); } else { const int M = 1 << 15; vector <C> t[2]; for (int x = 0; x < 2; ++x) { t[x].resize(n); const vector <T> & in = (x ? b : a); for (int i = 0; i < (int) in.size(); ++i) t[x][i] = C{ld(in[i] % M), ld(in[i] / M)}; dft(t[x], false); } vector <C> d1(n), d2(n); for (int i = 0; i < n; ++i) { d1[i] += speed(t[0], i, 0) * speed(t[1], i, 0); d1[i] += speed(t[0], i, 1) * speed(t[1], i, 1) * C{0, 1}; d2[i] += speed(t[0], i, 0) * speed(t[1], i, 1); d2[i] += speed(t[0], i, 1) * speed(t[1], i, 0); } dft(d1, true); dft(d2, true); for (int i = 0; i < n; ++i) { d1[i].imag /= n; } for (int i = 0; i < (int) ans.size(); ++i) { ans[i] = (llround(d1[i].real) + llround(d2[i].real) % mod * M + llround(d1[i].imag) % mod * (M * M)) % mod; } } return ans; } int real2rep(int x, int min_value){ return x - min_value; } int rep2real(int x, int min_value){ return x + min_value; } int brute_force(VI a){ unordered_map<int, int> cnt; REP(i, SZ(a)){ int sum = 0; FOR(j, i, SZ(a) - 1){ sum += a[j]; cnt[sum]++; } } int res = 0; for(PII p1 : cnt){ for(PII p2: cnt){ int val = -(p1.st + p2.st); if (cnt.count(val)){ res += p1.nd * p2.nd * cnt[val]; } } } for(PII p: cnt){ int val = -2 * p.st; if (cnt.count(val)){ res -= p.nd * cnt[val] * 3; } } res += cnt[0] * 2; res /= 6; return res; } int32_t main() { ios_base::sync_with_stdio(0); cin.tie(0); cout << fixed << setprecision(11); cerr << fixed << setprecision(6); int n; cin >> n; VI a(n); REP(i, n) cin >> a[i]; int max_abs_val = max(abs(*min_element(ALL(a))), abs(*max_element(ALL(a)))); int single_min_bound = -max_abs_val * n; VI cnt(max_abs_val * n * 2 + 1, 0); if(SZ(cnt) > 5e5){ debug("BRUTE"); cout << brute_force(a) << "\n"; return 0; } REP(i, n){ int sum = real2rep(0, single_min_bound); FOR(j, i, n - 1){ sum += a[j]; cnt[sum]++; } } REP(i, SZ(cnt)){ if(cnt[i]){ int real_i = rep2real(i, single_min_bound); debug(i, real_i, cnt[i]); } } // FFT fft(SZ(cnt)); debug(SZ(cnt)); VI res = multiply(cnt, cnt); int min_bound = 2 * single_min_bound; debug("FFT result"); REP(i, SZ(res)){ if(res[i]){ int real_i = rep2real(i, min_bound); debug(i, real_i, res[i]); } } int ans = 0; FOR(i, real2rep(single_min_bound, min_bound), real2rep(-single_min_bound, min_bound)){ // i is representation int val = rep2real(i, min_bound); int seeked_val = real2rep(-val, single_min_bound); ans += res[i] * cnt[seeked_val]; } debug("unordered triplets"); debug(ans); REP(i, SZ(cnt)){ int real_val = rep2real(i, single_min_bound); int double_val = 2 * real_val; int double_val_rep = real2rep(double_val, single_min_bound); if (double_val_rep < 0 || double_val_rep >= SZ(cnt)) continue; ans -= cnt[i] * cnt[real2rep(-double_val, single_min_bound)] * 3; } ans += cnt[real2rep(0, single_min_bound)] * 2; ans /= 6; cout << ans << "\n"; } |