// Przykładowe niepoprawne rozwiązanie do zadania Dzielniki. #include "dzilib.h" #pragma GCC optimize ("O3") #include <bits/stdc++.h> using namespace std; #define rep(i, a, b) for (int i = (a); i <= (b); i++) #define per(i, a, b) for (int i = (b); i >= (a); i--) #define SZ(x) ((int)x.size()) #define all(x) x.begin(), x.end() #define pb push_back #define mp make_pair #define mt make_tuple #define st first #define nd second using ll = long long; using vi = vector<int>; using pii = pair<int, int>; using pll = pair<ll, ll>; auto &operator<<(auto &o, pair<auto, auto> p) { return o << "(" << p.st << ", " << p.nd << ")"; } auto operator<<(auto &o, auto x)->decltype(end(x), o) { o << "{"; int i=0; for(auto e: x) o << ", " + 2*!i++ << e; return o << "}"; } #define deb(x...) cerr << "[" #x "]: ", [](auto...$) { ((cerr<<$<<"; "),...) << endl; }(x) mt19937 rng(chrono::steady_clock::now().time_since_epoch().count()); ll ops = 0; ll C; unsigned long long los(ll a, ll b){ unsigned long long tmp = rng(); unsigned long long res = (tmp << 32) + rng(); return a + res % (b - a + 1); } vector<ll> rozklad(ll x){ vector<ll> ans; for(ll i=2;i*i<=x;i++){ while(x % i == 0){ ans.pb(i); x /= i; } } if(x > 1) ans.pb(x); return ans; } ll divisorCount(ll x){ vector<ll> ans; for(ll i=2;i*i<=x;i++){ while(x % i == 0){ ans.pb(i); x /= i; } } if(x > 1) ans.pb(x); ll cnt = 1; rep(i, 0, SZ(ans) - 1){ int j = i; while(j + 1 < SZ(ans) && ans[j + 1] == ans[j]) j += 1; cnt *= (j - i + 2); i = j; } return cnt; } map<ll, int> cached; ll query(ll c){ if(cached.count(c)) return cached[c]; ops += 1; ll tmp = Ask(c); return cached[c] = tmp; } bool sprawdz(ll cand){ if(cand <= 0) return false; for(auto [c, res] : cached){ if(divisorCount(cand + c) != res) return false; } Answer(cand); return true; } ll male; void skoncz(){ cout << ops << endl; } ll duzaLosowa(){ return los(1, C / 1000); } vector<ll> divisors(ll x){ vector<ll> ans; for(ll i=1;i*i<=x;i++){ if(x % i == 0){ ans.pb(i); if(i * i != x) ans.pb(x/i); } } return ans; } bool in(ll x, vector<ll> a){ for(ll y : a){ if(x == y) return true; } return false; } bool szukaj(ll offset, int twos, bool canFail = false, bool duze = false){ //deb(twos); if(offset == -1){ ll added = duzaLosowa(); vector<int> res(2, 0); rep(i, 0, 1){ res[i] = query(i + added); } ll sum[2] = {0, 0}; rep(i, 0, 1) sum[i % 2] += res[i]; ll start = added; if(sum[1] < sum[0]) start += 1; auto ok = szukaj(start, 0); if(!ok) return szukaj(-1, 0); return true; } ll akt = query(offset); duze |= (rozklad(akt).back() >= 5); if(duze){ auto dziel = divisors(akt); ll mx = -1; for(auto x : dziel) mx = max(mx, x); while(!in(twos + 1, dziel) && twos + 1 < mx){ twos += 1; } } if(twos >= 58) return false; if(akt == twos + 1){ if(sprawdz((1LL << twos) - offset)){ return true; } return false; } if((1LL << twos) >= C / 1000 * 2){ if(akt == (twos + 1) * 2){ if(sprawdz((1LL << twos) * 3 - offset)){ return true; } } return false; } ll power = (1LL << twos); ll want = twos + 2; if(twos <= 17){ ll go1 = query(offset + power); ll go2 = query(offset + power + power + power); if(go1 % want != 0 && go2 % want != 0){ if(canFail) return false; else return szukaj(-1, 0); } want = twos + 2; if(go1 % want != go2 % want){ if(go1 % want == 0){ return szukaj(offset + power, twos + 1, duze); } else{ return szukaj(offset + power + power + power, twos + 1, duze); } } ll lewoW = 0; ll prawoW = 0; go1 /= want; go2 /= want; while(go1 % 2 == 0){ go1 /= 2; lewoW += 1; } while(go2 % 2 == 0){ go2 /= 2; prawoW += 1; } if(lewoW > prawoW){ auto res1 = szukaj(offset + power, twos + 1, true, duze); if(res1) return true; return szukaj(offset + power + power + power, twos + 1, canFail, duze); } else{ auto res1 = szukaj(offset + power + power + power, twos + 1, true, duze); if(res1) return true; return szukaj(offset + power, twos + 1, canFail, duze); } } else{ ll param1 = offset + power; ll param2 = offset + power + power + power; if(los(0, 1) == 0) swap(param1, param2); ll go1 = query(param1); if(go1 % want != 0) return szukaj(param1, twos + 1, canFail, duze); return szukaj(param2, twos + 1, canFail, duze); } } int dwojki(ll x){ int ans = 0; while(x % 2 == 0){ x /= 2; ans += 1; } return ans; } void solve(){ cached.clear(); auto akt = szukaj(-1, 0); assert(akt); } int main() { ios::sync_with_stdio(0); cin.tie(0); int tt = GetT(); C = GetC(); rep(te, 1, tt) solve(); return 0; }
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 | // Przykładowe niepoprawne rozwiązanie do zadania Dzielniki. #include "dzilib.h" #pragma GCC optimize ("O3") #include <bits/stdc++.h> using namespace std; #define rep(i, a, b) for (int i = (a); i <= (b); i++) #define per(i, a, b) for (int i = (b); i >= (a); i--) #define SZ(x) ((int)x.size()) #define all(x) x.begin(), x.end() #define pb push_back #define mp make_pair #define mt make_tuple #define st first #define nd second using ll = long long; using vi = vector<int>; using pii = pair<int, int>; using pll = pair<ll, ll>; auto &operator<<(auto &o, pair<auto, auto> p) { return o << "(" << p.st << ", " << p.nd << ")"; } auto operator<<(auto &o, auto x)->decltype(end(x), o) { o << "{"; int i=0; for(auto e: x) o << ", " + 2*!i++ << e; return o << "}"; } #define deb(x...) cerr << "[" #x "]: ", [](auto...$) { ((cerr<<$<<"; "),...) << endl; }(x) mt19937 rng(chrono::steady_clock::now().time_since_epoch().count()); ll ops = 0; ll C; unsigned long long los(ll a, ll b){ unsigned long long tmp = rng(); unsigned long long res = (tmp << 32) + rng(); return a + res % (b - a + 1); } vector<ll> rozklad(ll x){ vector<ll> ans; for(ll i=2;i*i<=x;i++){ while(x % i == 0){ ans.pb(i); x /= i; } } if(x > 1) ans.pb(x); return ans; } ll divisorCount(ll x){ vector<ll> ans; for(ll i=2;i*i<=x;i++){ while(x % i == 0){ ans.pb(i); x /= i; } } if(x > 1) ans.pb(x); ll cnt = 1; rep(i, 0, SZ(ans) - 1){ int j = i; while(j + 1 < SZ(ans) && ans[j + 1] == ans[j]) j += 1; cnt *= (j - i + 2); i = j; } return cnt; } map<ll, int> cached; ll query(ll c){ if(cached.count(c)) return cached[c]; ops += 1; ll tmp = Ask(c); return cached[c] = tmp; } bool sprawdz(ll cand){ if(cand <= 0) return false; for(auto [c, res] : cached){ if(divisorCount(cand + c) != res) return false; } Answer(cand); return true; } ll male; void skoncz(){ cout << ops << endl; } ll duzaLosowa(){ return los(1, C / 1000); } vector<ll> divisors(ll x){ vector<ll> ans; for(ll i=1;i*i<=x;i++){ if(x % i == 0){ ans.pb(i); if(i * i != x) ans.pb(x/i); } } return ans; } bool in(ll x, vector<ll> a){ for(ll y : a){ if(x == y) return true; } return false; } bool szukaj(ll offset, int twos, bool canFail = false, bool duze = false){ //deb(twos); if(offset == -1){ ll added = duzaLosowa(); vector<int> res(2, 0); rep(i, 0, 1){ res[i] = query(i + added); } ll sum[2] = {0, 0}; rep(i, 0, 1) sum[i % 2] += res[i]; ll start = added; if(sum[1] < sum[0]) start += 1; auto ok = szukaj(start, 0); if(!ok) return szukaj(-1, 0); return true; } ll akt = query(offset); duze |= (rozklad(akt).back() >= 5); if(duze){ auto dziel = divisors(akt); ll mx = -1; for(auto x : dziel) mx = max(mx, x); while(!in(twos + 1, dziel) && twos + 1 < mx){ twos += 1; } } if(twos >= 58) return false; if(akt == twos + 1){ if(sprawdz((1LL << twos) - offset)){ return true; } return false; } if((1LL << twos) >= C / 1000 * 2){ if(akt == (twos + 1) * 2){ if(sprawdz((1LL << twos) * 3 - offset)){ return true; } } return false; } ll power = (1LL << twos); ll want = twos + 2; if(twos <= 17){ ll go1 = query(offset + power); ll go2 = query(offset + power + power + power); if(go1 % want != 0 && go2 % want != 0){ if(canFail) return false; else return szukaj(-1, 0); } want = twos + 2; if(go1 % want != go2 % want){ if(go1 % want == 0){ return szukaj(offset + power, twos + 1, duze); } else{ return szukaj(offset + power + power + power, twos + 1, duze); } } ll lewoW = 0; ll prawoW = 0; go1 /= want; go2 /= want; while(go1 % 2 == 0){ go1 /= 2; lewoW += 1; } while(go2 % 2 == 0){ go2 /= 2; prawoW += 1; } if(lewoW > prawoW){ auto res1 = szukaj(offset + power, twos + 1, true, duze); if(res1) return true; return szukaj(offset + power + power + power, twos + 1, canFail, duze); } else{ auto res1 = szukaj(offset + power + power + power, twos + 1, true, duze); if(res1) return true; return szukaj(offset + power, twos + 1, canFail, duze); } } else{ ll param1 = offset + power; ll param2 = offset + power + power + power; if(los(0, 1) == 0) swap(param1, param2); ll go1 = query(param1); if(go1 % want != 0) return szukaj(param1, twos + 1, canFail, duze); return szukaj(param2, twos + 1, canFail, duze); } } int dwojki(ll x){ int ans = 0; while(x % 2 == 0){ x /= 2; ans += 1; } return ans; } void solve(){ cached.clear(); auto akt = szukaj(-1, 0); assert(akt); } int main() { ios::sync_with_stdio(0); cin.tie(0); int tt = GetT(); C = GetC(); rep(te, 1, tt) solve(); return 0; } |