#include "dzilib.h" #include <bits/stdc++.h> #define FOR(i,p,k) for(int i=(p);i<=(k);++i) #define REP(i,n) FOR(i,0,(n)-1) #define ssize(x) (int((x).size())) #define all(x) (x).begin(),(x).end() #define rall(x) (x).rbegin(),(x).rend() #define fi first #define se second using namespace std; typedef long long ll; typedef pair<int, int> pii; typedef pair<ll, int> pli; // https://github.com/tonowak/acmlib/blob/master/code/math/miller-rabin/main.cpp ll llmul(ll a, ll b, ll m){ return ll(__int128_t(a)*b%m); } ll llpowi(ll a, ll n, ll m){ for(ll ret = 1; ; n /= 2ll){ if(n == 0ll) return ret; if(n&1ll) ret = llmul(ret, a, m); a = llmul(a, a, m); } } bool miller_rabin(ll n) { if(n < 2) return false; int r = 0; ll d = n-1ll; while(~d&1ll) d>>=1, ++r; for(int a : {2, 325, 9375, 28178, 450775, 9780504, 1795265022}){ if(!(a%n)) continue; ll x = llpowi(a, d, n); if(x==1 || x==n-1) continue; bool composite = true; REP(i, r-1){ x = llmul(x, x, n); if(x == n-1ll){composite = false; break;} } if(composite) return false; } return true; } ll dzielniki(ll n){ ll ret = 1ll; for(ll i = 2ll; i*i*i <= n; ++i){ ll ile = 0ll; while(!(n%i)) n /= i, ++ile; ret *= ile+1ll; } if(n > 1){ if(miller_rabin(n)) return ret<<1; ll pier = roundl(sqrtl(n)); if(pier*pier == n) ret *= 3ll; else ret *= 4ll; } return ret; } // https://github.com/tonowak/acmlib/blob/master/code/math/extended-gcd/main.cpp tuple<ll, ll, ll> extended_gcd(ll a, ll b) { if(!a) return {b, 0, 1}; auto [gcd, x, y] = extended_gcd(b%a, a); return {gcd, y-x*(b/a), x}; } // https://github.com/tonowak/acmlib/blob/master/code/math/crt/main.cpp ll crt(ll a, ll m, ll b, ll n) { if(n > m) swap(a, b), swap(m, n); auto [d, x, y] = extended_gcd(m, n); ll ret = (b-a)%n*x%n/d*m + a; return ret < 0 ? ret + m*n/d : ret; } mt19937 mt(2137); uniform_int_distribution<ll> dist(0, 1e18); void solve(){ int q = GetQ(); ll c = GetC(); ll n = GetN(); ll los = n+dist(mt)%n; ll wiem_resz = 0ll; ll wiem_mod = 1ll; auto informacja = [&](ll resz, ll mod){ resz = (((resz-los)%mod)+mod)%mod; wiem_resz = crt(wiem_resz, wiem_mod, resz, mod); wiem_mod *= mod; }; unordered_map<ll, ll> mapa; auto zapytaj = [&](ll x){ if(!mapa[x]) mapa[x] = Ask(los+x); return mapa[x]; }; auto a_moze_wiem = [&](){ if(wiem_mod >= n){ ll ret = wiem_resz; if(!ret) ret += wiem_mod; return Answer(ret), 1; } if(wiem_mod > 148176000ll){ vector<ll> vec_kand; for(ll ret = wiem_resz; ret <= n; ret += wiem_mod) if(ret){ bool git = 1; for(auto [off, dziel] : mapa) if(dzielniki(ret+off+los) != dziel){git = 0; break;} if(git) vec_kand.emplace_back(ret); if(ssize(vec_kand) > 1) break; } //~ printf("murzyn: %d\n", ssize(vec_kand)); if(ssize(vec_kand) == 1) return Answer(vec_kand[0]), 1; } return 0; }; vector<pii> kwadraty; { set<int> secik; REP(x, 128) secik.emplace(x); for(int off = 0; ssize(secik) > 1; off += 128){ set<int> nowy; for(int x : secik){ ll t = zapytaj(off+x); if(!(t%7)) nowy.emplace(x); } swap(secik, nowy); } int t = *secik.begin(); kwadraty.emplace_back((128-t)%8, 2); informacja((128+64-t)%128, 128); } for(int p : {3, 5, 7, 11, 13}){ int p2 = p*p; int p3 = p2*p; vector<int> czy(p3, 1); vector<int> chce_ujebac(p3); auto czy_szukaj_dalej = [&](){ vector<int> vec_kand; REP(kand, p3){ bool git = 1; FOR(ile, 1, p-1) if(!czy[(kand+ile*p2)%p3]) git = 0; if(git) vec_kand.emplace_back(kand); } if(ssize(vec_kand) == 1){ int t = vec_kand[0]; kwadraty.emplace_back((p3-t)%p3, p); informacja((p3-t)%p3, p3); return 0; } REP(i, p3) chce_ujebac[i] = 0; for(int i : vec_kand) FOR(ile, 1, p-1) chce_ujebac[(i+ile*p2)%p3] = 1; return 1; }; for(int x = 0; czy_szukaj_dalej(); ++x) if(chce_ujebac[x%p3]){ ll t = zapytaj(x); int trojki = 0; while(!(t%3ll)) t /= 3ll, ++trojki; for(auto [fi, se] : kwadraty) if((ll(fi)+x)%(se*se*se) && !((x+ll(fi))%(se*se))) --trojki; if(!trojki) czy[x%p3] = 0; } if(a_moze_wiem()) return; } } int main(){ int t = GetT(); while(t--) solve(); return 0; }
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 | #include "dzilib.h" #include <bits/stdc++.h> #define FOR(i,p,k) for(int i=(p);i<=(k);++i) #define REP(i,n) FOR(i,0,(n)-1) #define ssize(x) (int((x).size())) #define all(x) (x).begin(),(x).end() #define rall(x) (x).rbegin(),(x).rend() #define fi first #define se second using namespace std; typedef long long ll; typedef pair<int, int> pii; typedef pair<ll, int> pli; // https://github.com/tonowak/acmlib/blob/master/code/math/miller-rabin/main.cpp ll llmul(ll a, ll b, ll m){ return ll(__int128_t(a)*b%m); } ll llpowi(ll a, ll n, ll m){ for(ll ret = 1; ; n /= 2ll){ if(n == 0ll) return ret; if(n&1ll) ret = llmul(ret, a, m); a = llmul(a, a, m); } } bool miller_rabin(ll n) { if(n < 2) return false; int r = 0; ll d = n-1ll; while(~d&1ll) d>>=1, ++r; for(int a : {2, 325, 9375, 28178, 450775, 9780504, 1795265022}){ if(!(a%n)) continue; ll x = llpowi(a, d, n); if(x==1 || x==n-1) continue; bool composite = true; REP(i, r-1){ x = llmul(x, x, n); if(x == n-1ll){composite = false; break;} } if(composite) return false; } return true; } ll dzielniki(ll n){ ll ret = 1ll; for(ll i = 2ll; i*i*i <= n; ++i){ ll ile = 0ll; while(!(n%i)) n /= i, ++ile; ret *= ile+1ll; } if(n > 1){ if(miller_rabin(n)) return ret<<1; ll pier = roundl(sqrtl(n)); if(pier*pier == n) ret *= 3ll; else ret *= 4ll; } return ret; } // https://github.com/tonowak/acmlib/blob/master/code/math/extended-gcd/main.cpp tuple<ll, ll, ll> extended_gcd(ll a, ll b) { if(!a) return {b, 0, 1}; auto [gcd, x, y] = extended_gcd(b%a, a); return {gcd, y-x*(b/a), x}; } // https://github.com/tonowak/acmlib/blob/master/code/math/crt/main.cpp ll crt(ll a, ll m, ll b, ll n) { if(n > m) swap(a, b), swap(m, n); auto [d, x, y] = extended_gcd(m, n); ll ret = (b-a)%n*x%n/d*m + a; return ret < 0 ? ret + m*n/d : ret; } mt19937 mt(2137); uniform_int_distribution<ll> dist(0, 1e18); void solve(){ int q = GetQ(); ll c = GetC(); ll n = GetN(); ll los = n+dist(mt)%n; ll wiem_resz = 0ll; ll wiem_mod = 1ll; auto informacja = [&](ll resz, ll mod){ resz = (((resz-los)%mod)+mod)%mod; wiem_resz = crt(wiem_resz, wiem_mod, resz, mod); wiem_mod *= mod; }; unordered_map<ll, ll> mapa; auto zapytaj = [&](ll x){ if(!mapa[x]) mapa[x] = Ask(los+x); return mapa[x]; }; auto a_moze_wiem = [&](){ if(wiem_mod >= n){ ll ret = wiem_resz; if(!ret) ret += wiem_mod; return Answer(ret), 1; } if(wiem_mod > 148176000ll){ vector<ll> vec_kand; for(ll ret = wiem_resz; ret <= n; ret += wiem_mod) if(ret){ bool git = 1; for(auto [off, dziel] : mapa) if(dzielniki(ret+off+los) != dziel){git = 0; break;} if(git) vec_kand.emplace_back(ret); if(ssize(vec_kand) > 1) break; } //~ printf("murzyn: %d\n", ssize(vec_kand)); if(ssize(vec_kand) == 1) return Answer(vec_kand[0]), 1; } return 0; }; vector<pii> kwadraty; { set<int> secik; REP(x, 128) secik.emplace(x); for(int off = 0; ssize(secik) > 1; off += 128){ set<int> nowy; for(int x : secik){ ll t = zapytaj(off+x); if(!(t%7)) nowy.emplace(x); } swap(secik, nowy); } int t = *secik.begin(); kwadraty.emplace_back((128-t)%8, 2); informacja((128+64-t)%128, 128); } for(int p : {3, 5, 7, 11, 13}){ int p2 = p*p; int p3 = p2*p; vector<int> czy(p3, 1); vector<int> chce_ujebac(p3); auto czy_szukaj_dalej = [&](){ vector<int> vec_kand; REP(kand, p3){ bool git = 1; FOR(ile, 1, p-1) if(!czy[(kand+ile*p2)%p3]) git = 0; if(git) vec_kand.emplace_back(kand); } if(ssize(vec_kand) == 1){ int t = vec_kand[0]; kwadraty.emplace_back((p3-t)%p3, p); informacja((p3-t)%p3, p3); return 0; } REP(i, p3) chce_ujebac[i] = 0; for(int i : vec_kand) FOR(ile, 1, p-1) chce_ujebac[(i+ile*p2)%p3] = 1; return 1; }; for(int x = 0; czy_szukaj_dalej(); ++x) if(chce_ujebac[x%p3]){ ll t = zapytaj(x); int trojki = 0; while(!(t%3ll)) t /= 3ll, ++trojki; for(auto [fi, se] : kwadraty) if((ll(fi)+x)%(se*se*se) && !((x+ll(fi))%(se*se))) --trojki; if(!trojki) czy[x%p3] = 0; } if(a_moze_wiem()) return; } } int main(){ int t = GetT(); while(t--) solve(); return 0; } |