1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
#include "bits/stdc++.h"
using namespace std;

using ll = long long;
const int INF = 1e9 + 7;
#define all(x) x.begin(), x.end()
#define pb push_back
#define cmax(x, y) (x = max(x, y))
#define cmin(x, y) (x = min(x, y))

#ifdef LOCAL
#include "debug.cpp"
#else
#define debug(x...)
#endif

template<const int &MOD>
struct _m_int {
    int val;
 
    _m_int(int64_t v = 0) {
        if (v < 0) v = v % MOD + MOD;
        if (v >= MOD) v %= MOD;
        val = int(v);
    }
 
    _m_int(uint64_t v) {
        if (v >= MOD) v %= MOD;
        val = int(v);
    }
 
    _m_int(int v) : _m_int(int64_t(v)) {}
    _m_int(unsigned v) : _m_int(uint64_t(v)) {}
 
    explicit operator int() const { return val; }
    explicit operator unsigned() const { return val; }
    explicit operator int64_t() const { return val; }
    explicit operator uint64_t() const { return val; }
    explicit operator double() const { return val; }
    explicit operator long double() const { return val; }
 
    _m_int& operator+=(const _m_int &other) {
        val -= MOD - other.val;
        if (val < 0) val += MOD;
        return *this;
    }
 
    _m_int& operator-=(const _m_int &other) {
        val -= other.val;
        if (val < 0) val += MOD;
        return *this;
    }
 
    static unsigned fast_mod(uint64_t x, unsigned m = MOD) {
#if !defined(_WIN32) || defined(_WIN64)
        return unsigned(x % m);
#endif
        // Optimized mod for Codeforces 32-bit machines.
        // x must be less than 2^32 * m for this to work, so that x / m fits in an unsigned 32-bit int.
        unsigned x_high = unsigned(x >> 32), x_low = unsigned(x);
        unsigned quot, rem;
        asm("divl %4\n"
            : "=a" (quot), "=d" (rem)
            : "d" (x_high), "a" (x_low), "r" (m));
        return rem;
    }
 
    _m_int& operator*=(const _m_int &other) {
        val = fast_mod(uint64_t(val) * other.val);
        return *this;
    }
 
    _m_int& operator/=(const _m_int &other) {
        return *this *= other.inv();
    }
 
    friend _m_int operator+(const _m_int &a, const _m_int &b) { return _m_int(a) += b; }
    friend _m_int operator-(const _m_int &a, const _m_int &b) { return _m_int(a) -= b; }
    friend _m_int operator*(const _m_int &a, const _m_int &b) { return _m_int(a) *= b; }
    friend _m_int operator/(const _m_int &a, const _m_int &b) { return _m_int(a) /= b; }
 
    _m_int& operator++() {
        val = val == MOD - 1 ? 0 : val + 1;
        return *this;
    }
 
    _m_int& operator--() {
        val = val == 0 ? MOD - 1 : val - 1;
        return *this;
    }
 
    _m_int operator++(int) { _m_int before = *this; ++*this; return before; }
    _m_int operator--(int) { _m_int before = *this; --*this; return before; }
 
    _m_int operator-() const {
        return val == 0 ? 0 : MOD - val;
    }
 
    friend bool operator==(const _m_int &a, const _m_int &b) { return a.val == b.val; }
    friend bool operator!=(const _m_int &a, const _m_int &b) { return a.val != b.val; }
    friend bool operator<(const _m_int &a, const _m_int &b) { return a.val < b.val; }
    friend bool operator>(const _m_int &a, const _m_int &b) { return a.val > b.val; }
    friend bool operator<=(const _m_int &a, const _m_int &b) { return a.val <= b.val; }
    friend bool operator>=(const _m_int &a, const _m_int &b) { return a.val >= b.val; }
 
    static const int SAVE_INV = int(1e6) + 5;
    static _m_int save_inv[SAVE_INV];
 
    static void prepare_inv() {
        // Ensures that MOD is prime, which is necessary for the inverse algorithm below.
        for (int64_t p = 2; p * p <= MOD; p += p % 2 + 1)
            assert(MOD % p != 0);
 
        save_inv[0] = 0;
        save_inv[1] = 1;
 
        for (int i = 2; i < SAVE_INV; i++)
            save_inv[i] = save_inv[MOD % i] * (MOD - MOD / i);
    }
 
    _m_int inv() const {
        if (save_inv[1] == 0)
            prepare_inv();
 
        if (val < SAVE_INV)
            return save_inv[val];
 
        _m_int product = 1;
        int v = val;
 
        do {
            product *= MOD - MOD / v;
            v = MOD % v;
        } while (v >= SAVE_INV);
 
        return product * save_inv[v];
    }
 
    _m_int pow(int64_t p) const {
        if (p < 0)
            return inv().pow(-p);
 
        _m_int a = *this, result = 1;
 
        while (p > 0) {
            if (p & 1)
                result *= a;
 
            p >>= 1;
 
            if (p > 0)
                a *= a;
        }
 
        return result;
    }
 
    friend ostream& operator<<(ostream &os, const _m_int &m) { return os << m.val; }
    friend istream& operator>>(istream &is, _m_int &m) {
        int64_t v;
        is >> v;
        m = _m_int(v);
        return is;
    }
};
 
template<const int &MOD> _m_int<MOD> _m_int<MOD>::save_inv[_m_int<MOD>::SAVE_INV];
 
const int MOD = 1000000007;
using mint = _m_int<MOD>;

const int MAXN = 5e5;
mint factorial[MAXN + 5];
int ile[MAXN + 5], height[2 * MAXN + 5];

mint newtwon(int a, int b) {
    if (b > a) return 0;
    return factorial[a] / (factorial[b] * factorial[a - b]);
}

void solve() {
    int n;
    cin >> n;
    vector <pair <int, int>> v(n + 1);
    for (int i = n; i >= 1; i--) {
        cin >> v[i].first >> v[i].second;
    }

    vector <set <int>> st(n + 1);
    for (int i = 1; i <= n; i++) {
        int l = -1, r = -1;
        for (int j = i + 1; j <= n; j++) {
            if (l == -1) {
                if (v[j].first < v[i].first && v[i].first < v[j].second) l = j;
            }
            if (r == -1) {
                if (v[j].first < v[i].second && v[i].second < v[j].second) r = j;
            }

            if (r != -1 && r != -1) break;
        }

        for (auto &x : st[i]) {
            if (l != -1) st[l].insert(x);
            if (r != -1) st[r].insert(x);
        }
        if (l != -1) st[l].insert(i);
        if (r != -1) st[r].insert(i);
    }
    for (int i = 1; i <= n; i++) ile[i] = st[i].size();

    mint licznik = 0;
    for (int i = 1; i <= n; i++) {
        int s = ile[i] + 1;

        mint xd = 0;
        for (int j = 1, sgn = 1; j < s; j++) {
            xd += newtwon(s - 1, j) * newtwon(n, j + 1) * factorial[j] * factorial[n - j - 1] * sgn;
            sgn *= -1;
        }

        licznik += factorial[n] - xd;
    }
    
    cout << licznik / factorial[n] << '\n';
}

int main() {
    ios_base::sync_with_stdio(0); cin.tie(0); cout.tie(0);
    
    factorial[0] = 1;
    for (int i = 1; i <= MAXN; i++) {
        factorial[i] = factorial[i - 1] * i;
    }

    int t = 1;
    // cin >> t;
    while (t--) solve();
}