#include <bits/stdc++.h> #include "dzilib.h" using namespace std; typedef long long ll; typedef pair<int, int> pii; const int N = 1e5+10; const ll X = 1e14; bool comp[N]; vector<ll> prm; // Integer factorization in O(N^{1/4}) // uses squfof from msieve https://github.com/radii/msieve // works up to 10^18 // probably fails on 5003^5 which is ~10^{18.5} namespace NT{ template<typename T> struct bigger_type{}; template<typename T> using bigger_type_t = typename bigger_type<T>::type; template<> struct bigger_type<int>{using type = long long;}; template<> struct bigger_type<unsigned int>{using type = unsigned long long;}; //template<> struct bigger_type<int64_t>{using type = __int128;}; //template<> struct bigger_type<uint64_t>{using type = unsigned __int128;}; template<typename int_t = unsigned long long> struct Mod_Int{ static inline int_t add(int_t const&a, int_t const&b, int_t const&mod){ int_t ret = a+b; if(ret>=mod) ret-=mod; return ret; } static inline int_t sub(int_t const&a, int_t const&b, int_t const&mod){ return add(a, mod-b); } static inline int_t mul(int_t const&a, int_t const&b, int_t const&mod){ uint64_t ret = a * (uint64_t)b - (uint64_t)((long double)a * b / mod - 1.1) * mod; if(-ret < ret){ ret = mod-1-(-ret-1)%mod; } else { ret%=mod; } //ret = min(ret, ret+mod); int64_t out = ret; /*if(out != a*(__int128) b % mod){ cerr << (long double)a * b / mod << " " << (uint64_t)((long double)a * b / mod - 0.1) << "\n"; cerr << mod << " " << ret << " " << ret+mod << " " << out << " " << (int64_t)(a*(__int128) b % mod) << "\n"; assert(0); }*/ return out; //return a*static_cast<bigger_type_t<int_t>>(b)%mod; } static inline int_t pow(int_t const&a, int_t const&b, int_t const&mod){ int_t ret = 1; int_t base = a; for(int i=0;b>>i;++i){ if((b>>i)&1) ret = mul(ret, base, mod); base = mul(base, base, mod); } return ret; } }; template<typename T> typename enable_if<is_integral<T>::value, bool>::type is_prime(T x){ if(x<T(4)) return x>T(1); for(T i=2;i*i<=x;++i){ if(x%i == 0) return false; } return true; } template<typename T> typename enable_if<is_integral<T>::value, bool>::type miller_rabin_single(T const&x, T base){ if(x<T(4)) return x>T(1); if(x%2 == 0) return false; base%=x; if(base == 0) return true; T xm1 = x-1; int j = 1; T d = xm1/2; while(d%2 == 0){ // could use __builtin_ctz d/=2; ++j; } T t = Mod_Int<T>::pow(base, d, x); if(t==T(1) || t==T(xm1)) return true; for(int k=1;k<j;++k){ t = Mod_Int<T>::mul(t, t, x); if(t == xm1) return true; if(t<=1) break; } return false; } template<typename T> typename enable_if<is_integral<T>::value, bool>::type miller_rabin_multi(T const&){return true;} template<typename T, typename... S> typename enable_if<is_integral<T>::value, bool>::type miller_rabin_multi(T const&x, T const&base, S const&...bases){ if(!miller_rabin_single(x, base)) return false; return miller_rabin_multi(x, bases...); } template<typename T> typename enable_if<is_integral<T>::value, bool>::type miller_rabin(T const&x){ if(x < 316349281) return miller_rabin_multi(x, T(11000544), T(31481107)); if(x < 4759123141ull) return miller_rabin_multi(x, T(2), T(7), T(61)); return miller_rabin_multi(x, T(2), T(325), T(9375), T(28178), T(450775), T(9780504), T(1795265022)); } template<typename T> typename enable_if<is_integral<T>::value, T>::type isqrt(T const&x){ assert(x>=T(0)); T ret = static_cast<T>(sqrtl(x)); while(ret>0 && ret*ret>x) --ret; while(x-ret*ret>2*ret) ++ret; return ret; } template<typename T> typename enable_if<is_integral<T>::value, T>::type icbrt(T const&x){ assert(x>=T(0)); T ret = static_cast<T>(cbrt(x)); while(ret>0 && ret*ret*ret>x) --ret; while(x-ret*ret*ret>3*ret*(ret+1)) ++ret; return ret; } /*uint64_t isqrt(unsigned __int128 const&x){ unsigned __int128 ret = sqrtl(x); while(ret>0 && ret*ret>x) --ret; while(x-ret*ret>2*ret) ++ret; return ret; }*/ vector<uint16_t> saved; // fast prime factorization from // https://github.com/radii/msieve uint64_t squfof_iter_better(uint64_t const&x, uint64_t const&k, uint64_t const&it_max, uint32_t cutoff_div){ if(__gcd((uint64_t)k, x)!=1) return __gcd((uint64_t)k, x); //cerr << "try: " << x << " " << k << "\n"; saved.clear(); uint64_t scaledn = k*x; if(scaledn>>62) return 1; uint32_t sqrtn = isqrt(scaledn); uint32_t cutoff = isqrt(2*sqrtn)/cutoff_div; uint32_t q0 = 1; uint32_t p1 = sqrtn; uint32_t q1 = scaledn-p1*p1; if(q1 == 0){ uint64_t factor = __gcd(x, (uint64_t)p1); return factor==x ? 1:factor; } uint32_t multiplier = 2*k; uint32_t coarse_cutoff = cutoff * multiplier; //cerr << "at: " << multiplier << "\n"; uint32_t i, j; uint32_t p0 = 0; uint32_t sqrtq = 0; for(i=0;i<it_max;++i){ uint32_t q, bits, tmp; tmp = sqrtn + p1 - q1; q = 1; if (tmp >= q1) q += tmp / q1; p0 = q * q1 - p1; q0 = q0 + (p1 - p0) * q; if (q1 < coarse_cutoff) { tmp = q1 / __gcd(q1, multiplier); if (tmp < cutoff) { saved.push_back((uint16_t)tmp); } } bits = 0; tmp = q0; while(!(tmp & 1)) { bits++; tmp >>= 1; } if (!(bits & 1) && ((tmp & 7) == 1)) { sqrtq = (uint32_t)isqrt(q0); if (sqrtq * sqrtq == q0) { for(j=0;j<saved.size();++j){ if(saved[j] == sqrtq) break; } if(j == saved.size()) break; //else cerr << "skip " << i << "\n";; } } tmp = sqrtn + p0 - q0; q = 1; if (tmp >= q0) q += tmp / q0; p1 = q * q0 - p0; q1 = q1 + (p0 - p1) * q; if (q0 < coarse_cutoff) { tmp = q0 / __gcd(q0, multiplier); if (tmp < cutoff) { saved.push_back((uint16_t) tmp); } } } if(sqrtq == 1) { return 1;} if(i == it_max) { return 1;} q0 = sqrtq; p1 = p0 + sqrtq * ((sqrtn - p0) / sqrtq); q1 = (scaledn - (uint64_t)p1 * (uint64_t)p1) / (uint64_t)q0; for(j=0;j<it_max;++j) { uint32_t q, tmp; tmp = sqrtn + p1 - q1; q = 1; if (tmp >= q1) q += tmp / q1; p0 = q * q1 - p1; q0 = q0 + (p1 - p0) * q; if (p0 == p1) { q0 = q1; break; } tmp = sqrtn + p0 - q0; q = 1; if (tmp >= q0) q += tmp / q0; p1 = q * q0 - p0; q1 = q1 + (p0 - p1) * q; if (p0 == p1) break; } if(j==it_max) {cerr << "RNG\n"; return 1;} // random fail uint64_t factor = __gcd((uint64_t)q0, x); if(factor == x) factor=1; return factor; } uint64_t squfof(uint64_t const&x){ static array<uint32_t, 16> multipliers{1, 3, 5, 7, 11, 3*5, 3*7, 3*11, 5*7, 5*11, 7*11, 3*5*7, 3*5*11, 3*7*11, 5*7*11, 3*5*7*11}; uint64_t cbrt_x = icbrt(x); if(cbrt_x*cbrt_x*cbrt_x == x) return cbrt_x; //uint32_t iter_lim = isqrt(isqrt(x))+10; uint32_t iter_lim = 300; for(uint32_t iter_fact = 1;iter_fact<20000;iter_fact*=4){ for(uint32_t const&k : multipliers){ if(numeric_limits<uint64_t>::max()/k<=x) continue; //would overflow uint32_t const it_max = iter_fact*iter_lim; uint64_t factor = squfof_iter_better(x, k, it_max, 1); if(factor==1 || factor==x) continue; return factor; } } cerr << "failed to factor: " << x << "\n"; assert(0); assert(0); return 1; } template<typename T> typename enable_if<is_integral<T>::value, vector<T>>::type factorize_brute(T x){ vector<T> ret; while(x%2 == 0){ x/=2; ret.push_back(2); } for(uint32_t i=3;i*(T)i <= x;i+=2){ while(x%i == 0){ x/=i; ret.push_back(i); } } if(x>1) ret.push_back(x); return ret; } // Hello there template<typename T> typename enable_if<is_integral<T>::value, vector<T>>::type factorize(T x){ //cerr << "factor: " << x << "\n"; vector<T> ret; const uint32_t trial_limit = 5000; auto trial = [&](uint32_t const&i){ while(x%i == 0){ x/=i; ret.push_back(i); } }; trial(2); trial(3); for(uint32_t i=5, j=2;i<trial_limit && i*i <= x;i+=j, j=6-j){ trial(i); } if(x>1){ static stack<T> s; s.push(x); while(!s.empty()){ x = s.top(); s.pop(); if(!miller_rabin(x)){ T factor = squfof(x); if(factor == 1 || factor == x){assert(0); return ret;} //cerr << x << " -> " << factor << "\n"; s.push(factor); s.push(x/factor); } else { ret.push_back(x); } } } sort(ret.begin(), ret.end()); return ret; } } ll d(ll x) { auto v=NT::factorize(x); ll res=1, sz=v.size(); for (int i=0; i<sz; ++i) { int j=i; while (j < sz) { if (v[j] == v[i]) ++j; else break; } res*=1ll*(j-i+1); i=j-1; } return res; } ll qlim, t, n, q, c, plim; vector<ll> qs; bool check(ll x) { for (int i=0; i<(int)qs.size(); ++i) { if (d(x+i) != qs[i]) return false; } return true; } bool gen(int i, ll x, ll c) { if (x > n || i >= (int)prm.size() || prm[i] > plim) return false; if (qs[0]%d(x) != 0) return false; if (x <= n) { if (check(x)) { Answer(x-c); return true; } } if (x*prm[i] > n) return false; if (gen(i+1, x, c)) return true; while (x <= n) { x*=prm[i]; if (gen(i+1, x, c)) return true; } return false; } void solve() { qlim=q/t-1; qs.clear(); n*=2; ll c=0, mxv=Ask(0), p=-1, tmp=0; ll us=qlim/2; while (us--) { p=Ask(tmp), --qlim; if (p > mxv) mxv=p, c=tmp; ++tmp; } ll lx=0; for (int i=0; i<60; ++i) { if (mxv&(1ll<<i)) lx=i; } ++lx; plim=pow(n, 1.0/(1.0*lx))+10; int k=min(qlim, 100ll); for (ll i=0; i<qlim; ++i) qs.push_back(Ask(c+i)); assert(gen(0, 1, c)); } int main() { ios_base::sync_with_stdio(0); cin.tie(NULL); cout.tie(NULL); comp[1]=true; for (int i=2; i<N; ++i) { if (comp[i]) continue; for (int j=2*i; j<N; j+=i) comp[j]=true; } for (int i=1; i<N; ++i) { if (!comp[i]) prm.push_back(i); } t=GetT(); n=GetN(), q=GetQ(), c=GetC(); for (int i=0; i<t; ++i) solve(); }
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 | #include <bits/stdc++.h> #include "dzilib.h" using namespace std; typedef long long ll; typedef pair<int, int> pii; const int N = 1e5+10; const ll X = 1e14; bool comp[N]; vector<ll> prm; // Integer factorization in O(N^{1/4}) // uses squfof from msieve https://github.com/radii/msieve // works up to 10^18 // probably fails on 5003^5 which is ~10^{18.5} namespace NT{ template<typename T> struct bigger_type{}; template<typename T> using bigger_type_t = typename bigger_type<T>::type; template<> struct bigger_type<int>{using type = long long;}; template<> struct bigger_type<unsigned int>{using type = unsigned long long;}; //template<> struct bigger_type<int64_t>{using type = __int128;}; //template<> struct bigger_type<uint64_t>{using type = unsigned __int128;}; template<typename int_t = unsigned long long> struct Mod_Int{ static inline int_t add(int_t const&a, int_t const&b, int_t const&mod){ int_t ret = a+b; if(ret>=mod) ret-=mod; return ret; } static inline int_t sub(int_t const&a, int_t const&b, int_t const&mod){ return add(a, mod-b); } static inline int_t mul(int_t const&a, int_t const&b, int_t const&mod){ uint64_t ret = a * (uint64_t)b - (uint64_t)((long double)a * b / mod - 1.1) * mod; if(-ret < ret){ ret = mod-1-(-ret-1)%mod; } else { ret%=mod; } //ret = min(ret, ret+mod); int64_t out = ret; /*if(out != a*(__int128) b % mod){ cerr << (long double)a * b / mod << " " << (uint64_t)((long double)a * b / mod - 0.1) << "\n"; cerr << mod << " " << ret << " " << ret+mod << " " << out << " " << (int64_t)(a*(__int128) b % mod) << "\n"; assert(0); }*/ return out; //return a*static_cast<bigger_type_t<int_t>>(b)%mod; } static inline int_t pow(int_t const&a, int_t const&b, int_t const&mod){ int_t ret = 1; int_t base = a; for(int i=0;b>>i;++i){ if((b>>i)&1) ret = mul(ret, base, mod); base = mul(base, base, mod); } return ret; } }; template<typename T> typename enable_if<is_integral<T>::value, bool>::type is_prime(T x){ if(x<T(4)) return x>T(1); for(T i=2;i*i<=x;++i){ if(x%i == 0) return false; } return true; } template<typename T> typename enable_if<is_integral<T>::value, bool>::type miller_rabin_single(T const&x, T base){ if(x<T(4)) return x>T(1); if(x%2 == 0) return false; base%=x; if(base == 0) return true; T xm1 = x-1; int j = 1; T d = xm1/2; while(d%2 == 0){ // could use __builtin_ctz d/=2; ++j; } T t = Mod_Int<T>::pow(base, d, x); if(t==T(1) || t==T(xm1)) return true; for(int k=1;k<j;++k){ t = Mod_Int<T>::mul(t, t, x); if(t == xm1) return true; if(t<=1) break; } return false; } template<typename T> typename enable_if<is_integral<T>::value, bool>::type miller_rabin_multi(T const&){return true;} template<typename T, typename... S> typename enable_if<is_integral<T>::value, bool>::type miller_rabin_multi(T const&x, T const&base, S const&...bases){ if(!miller_rabin_single(x, base)) return false; return miller_rabin_multi(x, bases...); } template<typename T> typename enable_if<is_integral<T>::value, bool>::type miller_rabin(T const&x){ if(x < 316349281) return miller_rabin_multi(x, T(11000544), T(31481107)); if(x < 4759123141ull) return miller_rabin_multi(x, T(2), T(7), T(61)); return miller_rabin_multi(x, T(2), T(325), T(9375), T(28178), T(450775), T(9780504), T(1795265022)); } template<typename T> typename enable_if<is_integral<T>::value, T>::type isqrt(T const&x){ assert(x>=T(0)); T ret = static_cast<T>(sqrtl(x)); while(ret>0 && ret*ret>x) --ret; while(x-ret*ret>2*ret) ++ret; return ret; } template<typename T> typename enable_if<is_integral<T>::value, T>::type icbrt(T const&x){ assert(x>=T(0)); T ret = static_cast<T>(cbrt(x)); while(ret>0 && ret*ret*ret>x) --ret; while(x-ret*ret*ret>3*ret*(ret+1)) ++ret; return ret; } /*uint64_t isqrt(unsigned __int128 const&x){ unsigned __int128 ret = sqrtl(x); while(ret>0 && ret*ret>x) --ret; while(x-ret*ret>2*ret) ++ret; return ret; }*/ vector<uint16_t> saved; // fast prime factorization from // https://github.com/radii/msieve uint64_t squfof_iter_better(uint64_t const&x, uint64_t const&k, uint64_t const&it_max, uint32_t cutoff_div){ if(__gcd((uint64_t)k, x)!=1) return __gcd((uint64_t)k, x); //cerr << "try: " << x << " " << k << "\n"; saved.clear(); uint64_t scaledn = k*x; if(scaledn>>62) return 1; uint32_t sqrtn = isqrt(scaledn); uint32_t cutoff = isqrt(2*sqrtn)/cutoff_div; uint32_t q0 = 1; uint32_t p1 = sqrtn; uint32_t q1 = scaledn-p1*p1; if(q1 == 0){ uint64_t factor = __gcd(x, (uint64_t)p1); return factor==x ? 1:factor; } uint32_t multiplier = 2*k; uint32_t coarse_cutoff = cutoff * multiplier; //cerr << "at: " << multiplier << "\n"; uint32_t i, j; uint32_t p0 = 0; uint32_t sqrtq = 0; for(i=0;i<it_max;++i){ uint32_t q, bits, tmp; tmp = sqrtn + p1 - q1; q = 1; if (tmp >= q1) q += tmp / q1; p0 = q * q1 - p1; q0 = q0 + (p1 - p0) * q; if (q1 < coarse_cutoff) { tmp = q1 / __gcd(q1, multiplier); if (tmp < cutoff) { saved.push_back((uint16_t)tmp); } } bits = 0; tmp = q0; while(!(tmp & 1)) { bits++; tmp >>= 1; } if (!(bits & 1) && ((tmp & 7) == 1)) { sqrtq = (uint32_t)isqrt(q0); if (sqrtq * sqrtq == q0) { for(j=0;j<saved.size();++j){ if(saved[j] == sqrtq) break; } if(j == saved.size()) break; //else cerr << "skip " << i << "\n";; } } tmp = sqrtn + p0 - q0; q = 1; if (tmp >= q0) q += tmp / q0; p1 = q * q0 - p0; q1 = q1 + (p0 - p1) * q; if (q0 < coarse_cutoff) { tmp = q0 / __gcd(q0, multiplier); if (tmp < cutoff) { saved.push_back((uint16_t) tmp); } } } if(sqrtq == 1) { return 1;} if(i == it_max) { return 1;} q0 = sqrtq; p1 = p0 + sqrtq * ((sqrtn - p0) / sqrtq); q1 = (scaledn - (uint64_t)p1 * (uint64_t)p1) / (uint64_t)q0; for(j=0;j<it_max;++j) { uint32_t q, tmp; tmp = sqrtn + p1 - q1; q = 1; if (tmp >= q1) q += tmp / q1; p0 = q * q1 - p1; q0 = q0 + (p1 - p0) * q; if (p0 == p1) { q0 = q1; break; } tmp = sqrtn + p0 - q0; q = 1; if (tmp >= q0) q += tmp / q0; p1 = q * q0 - p0; q1 = q1 + (p0 - p1) * q; if (p0 == p1) break; } if(j==it_max) {cerr << "RNG\n"; return 1;} // random fail uint64_t factor = __gcd((uint64_t)q0, x); if(factor == x) factor=1; return factor; } uint64_t squfof(uint64_t const&x){ static array<uint32_t, 16> multipliers{1, 3, 5, 7, 11, 3*5, 3*7, 3*11, 5*7, 5*11, 7*11, 3*5*7, 3*5*11, 3*7*11, 5*7*11, 3*5*7*11}; uint64_t cbrt_x = icbrt(x); if(cbrt_x*cbrt_x*cbrt_x == x) return cbrt_x; //uint32_t iter_lim = isqrt(isqrt(x))+10; uint32_t iter_lim = 300; for(uint32_t iter_fact = 1;iter_fact<20000;iter_fact*=4){ for(uint32_t const&k : multipliers){ if(numeric_limits<uint64_t>::max()/k<=x) continue; //would overflow uint32_t const it_max = iter_fact*iter_lim; uint64_t factor = squfof_iter_better(x, k, it_max, 1); if(factor==1 || factor==x) continue; return factor; } } cerr << "failed to factor: " << x << "\n"; assert(0); assert(0); return 1; } template<typename T> typename enable_if<is_integral<T>::value, vector<T>>::type factorize_brute(T x){ vector<T> ret; while(x%2 == 0){ x/=2; ret.push_back(2); } for(uint32_t i=3;i*(T)i <= x;i+=2){ while(x%i == 0){ x/=i; ret.push_back(i); } } if(x>1) ret.push_back(x); return ret; } // Hello there template<typename T> typename enable_if<is_integral<T>::value, vector<T>>::type factorize(T x){ //cerr << "factor: " << x << "\n"; vector<T> ret; const uint32_t trial_limit = 5000; auto trial = [&](uint32_t const&i){ while(x%i == 0){ x/=i; ret.push_back(i); } }; trial(2); trial(3); for(uint32_t i=5, j=2;i<trial_limit && i*i <= x;i+=j, j=6-j){ trial(i); } if(x>1){ static stack<T> s; s.push(x); while(!s.empty()){ x = s.top(); s.pop(); if(!miller_rabin(x)){ T factor = squfof(x); if(factor == 1 || factor == x){assert(0); return ret;} //cerr << x << " -> " << factor << "\n"; s.push(factor); s.push(x/factor); } else { ret.push_back(x); } } } sort(ret.begin(), ret.end()); return ret; } } ll d(ll x) { auto v=NT::factorize(x); ll res=1, sz=v.size(); for (int i=0; i<sz; ++i) { int j=i; while (j < sz) { if (v[j] == v[i]) ++j; else break; } res*=1ll*(j-i+1); i=j-1; } return res; } ll qlim, t, n, q, c, plim; vector<ll> qs; bool check(ll x) { for (int i=0; i<(int)qs.size(); ++i) { if (d(x+i) != qs[i]) return false; } return true; } bool gen(int i, ll x, ll c) { if (x > n || i >= (int)prm.size() || prm[i] > plim) return false; if (qs[0]%d(x) != 0) return false; if (x <= n) { if (check(x)) { Answer(x-c); return true; } } if (x*prm[i] > n) return false; if (gen(i+1, x, c)) return true; while (x <= n) { x*=prm[i]; if (gen(i+1, x, c)) return true; } return false; } void solve() { qlim=q/t-1; qs.clear(); n*=2; ll c=0, mxv=Ask(0), p=-1, tmp=0; ll us=qlim/2; while (us--) { p=Ask(tmp), --qlim; if (p > mxv) mxv=p, c=tmp; ++tmp; } ll lx=0; for (int i=0; i<60; ++i) { if (mxv&(1ll<<i)) lx=i; } ++lx; plim=pow(n, 1.0/(1.0*lx))+10; int k=min(qlim, 100ll); for (ll i=0; i<qlim; ++i) qs.push_back(Ask(c+i)); assert(gen(0, 1, c)); } int main() { ios_base::sync_with_stdio(0); cin.tie(NULL); cout.tie(NULL); comp[1]=true; for (int i=2; i<N; ++i) { if (comp[i]) continue; for (int j=2*i; j<N; j+=i) comp[j]=true; } for (int i=1; i<N; ++i) { if (!comp[i]) prm.push_back(i); } t=GetT(); n=GetN(), q=GetQ(), c=GetC(); for (int i=0; i<t; ++i) solve(); } |