#include <bits/stdc++.h> using namespace std; long long BIG_PRIME = 1e9+7; struct Node { int id; vector<int> neighbours; }; map<pair<int, int>, long long> binomial_cache; map<int, long long> power_cache; long long my_power(int exponent) { if (exponent == 0) { return 1; } if (power_cache.find(exponent) != power_cache.end()) { return power_cache[exponent]; } long long result; if (exponent % 2 == 0) { result = my_power(exponent / 2) * my_power(exponent / 2) % BIG_PRIME; } else { result = my_power((exponent - 1) / 2) * my_power((exponent - 1)/2) * 2 % BIG_PRIME; } power_cache[exponent] = result; return result; } long long BinomialCoefficient(int n, int k) { if (k == 0 or k == n) { return 1; } if (binomial_cache.find({n, k}) != binomial_cache.end()) { return binomial_cache[{n, k}]; } long long result = (BinomialCoefficient(n - 1, k - 1) + BinomialCoefficient(n - 1, k)) % BIG_PRIME; binomial_cache[{n, k}] = result; return result; } vector<vector<int>> value_by_parity(vector<Node> &lights, int start, string position) { queue<pair<int, int>> q; vector<vector<int>> result(2, vector<int>(2, 0)); q.push({start, 0}); vector<bool> visited(lights.size(), false); visited[start] = true; while (!q.empty()) { auto [current, parity] = q.front(); q.pop(); result[parity][position[current] == '0' ? 0 : 1]++; for (int neighbour : lights[current].neighbours) { if (!visited[neighbour]) { q.push({neighbour, parity ^ 1}); visited[neighbour] = true; } } } return result; } vector<pair<Node, int>> split_graph(vector<Node> &lights) { vector<pair<Node, int>> result; vector<int> groups(lights.size(), -1); for (Node node : lights) { if (groups[node.id] == -1) { queue<int> q; q.push(node.id); groups[node.id] = node.id; int size = 1; while (!q.empty()) { Node current = lights[q.front()]; q.pop(); for (int neighbour_id : current.neighbours) { if (groups[neighbour_id] == -1) { groups[neighbour_id] = node.id; size++; q.push(neighbour_id); } } } result.push_back({node, size}); } } return result; } bool find_odd_cycle(Node node, vector<Node> &lights) { queue<int> q; vector<int> groups(lights.size(), -1); q.push(node.id); groups[node.id] = 0; while (!q.empty()) { Node current = lights[q.front()]; q.pop(); for (int neighbour_id : current.neighbours) { if (groups[neighbour_id] == -1) { groups[neighbour_id] = groups[current.id] == 0 ? 1 : 0; q.push(neighbour_id); } else if (groups[neighbour_id] == groups[current.id]) { return true; } } } return false; } long long solve_compact(Node node, int size, string current, vector<Node> &lights) { // cout << "Solving " << node.id << " " << size << endl; if (size == 1) { return 1; } // cout << "Solving " << node.id << " " << size << endl; if (size > 2 && find_odd_cycle(node, lights)) { return my_power(size - 1); } vector<vector<int>> value = value_by_parity(lights, node.id, current); // cout << "Parity" << endl; // cout << value[0][0] << " " << value[0][1] << endl; // cout << value[1][0] << " " << value[1][1] << endl; if (value[0][0] + value[1][1] > value[0][1] + value[1][0]) { swap(value[0][0], value[0][1]); swap(value[1][0], value[1][1]); } int big_start = value[0][0] + value[1][1]; int bigger = max(value[0][0] + value[0][1], value[1][0] + value[1][1]); int smaller = min(value[0][0] + value[0][1], value[1][0] + value[1][1]); long long result = 0; int i = 0; while(true) { // cout << "Binomial " << bigger << " " << big_start - i << endl; // cout << "Binomial " << smaller << " " << i << endl; result += BinomialCoefficient(bigger, big_start - i) * BinomialCoefficient(smaller, i); result %= BIG_PRIME; if (i == smaller or big_start - i == 0) { break; } i++; } return result; // return brute(current, node, lights); } int main() { std::ios_base::sync_with_stdio(false); std::cin.tie(0); int n, m; cin >> n >> m; vector<Node> lights; for (int i = 0; i < n; i++) { Node node = Node(); node.id = i; lights.push_back(node); } string current = ""; for (int i = 0; i < n; i++) { string c; cin >> c; current += c; } // cout << current << endl; // cout << "blocked: " << compress(current).size() << " - " << compress(current) << endl; for (int i = 0; i < m; i++) { int a, b; cin >> a >> b; // lights[a - 1].neighbours.push_back(lights[b - 1]); // lights[b - 1].neighbours.push_back(lights[a - 1]); lights[a - 1].neighbours.push_back(b - 1); lights[b - 1].neighbours.push_back(a - 1); // cout << "neighbours " << a << " " << b << endl; } vector<pair<Node, int>> splited = split_graph(lights); // cout << "OK" << endl; long long result = 1; for (auto [node, size] : splited) { // cout << "Splited " << node.id << " " << size << endl; long long tmp = solve_compact(node, size, current, lights); // cout << tmp << endl; result *= tmp; result %= BIG_PRIME; } cout << result << endl; return 0; }
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 | #include <bits/stdc++.h> using namespace std; long long BIG_PRIME = 1e9+7; struct Node { int id; vector<int> neighbours; }; map<pair<int, int>, long long> binomial_cache; map<int, long long> power_cache; long long my_power(int exponent) { if (exponent == 0) { return 1; } if (power_cache.find(exponent) != power_cache.end()) { return power_cache[exponent]; } long long result; if (exponent % 2 == 0) { result = my_power(exponent / 2) * my_power(exponent / 2) % BIG_PRIME; } else { result = my_power((exponent - 1) / 2) * my_power((exponent - 1)/2) * 2 % BIG_PRIME; } power_cache[exponent] = result; return result; } long long BinomialCoefficient(int n, int k) { if (k == 0 or k == n) { return 1; } if (binomial_cache.find({n, k}) != binomial_cache.end()) { return binomial_cache[{n, k}]; } long long result = (BinomialCoefficient(n - 1, k - 1) + BinomialCoefficient(n - 1, k)) % BIG_PRIME; binomial_cache[{n, k}] = result; return result; } vector<vector<int>> value_by_parity(vector<Node> &lights, int start, string position) { queue<pair<int, int>> q; vector<vector<int>> result(2, vector<int>(2, 0)); q.push({start, 0}); vector<bool> visited(lights.size(), false); visited[start] = true; while (!q.empty()) { auto [current, parity] = q.front(); q.pop(); result[parity][position[current] == '0' ? 0 : 1]++; for (int neighbour : lights[current].neighbours) { if (!visited[neighbour]) { q.push({neighbour, parity ^ 1}); visited[neighbour] = true; } } } return result; } vector<pair<Node, int>> split_graph(vector<Node> &lights) { vector<pair<Node, int>> result; vector<int> groups(lights.size(), -1); for (Node node : lights) { if (groups[node.id] == -1) { queue<int> q; q.push(node.id); groups[node.id] = node.id; int size = 1; while (!q.empty()) { Node current = lights[q.front()]; q.pop(); for (int neighbour_id : current.neighbours) { if (groups[neighbour_id] == -1) { groups[neighbour_id] = node.id; size++; q.push(neighbour_id); } } } result.push_back({node, size}); } } return result; } bool find_odd_cycle(Node node, vector<Node> &lights) { queue<int> q; vector<int> groups(lights.size(), -1); q.push(node.id); groups[node.id] = 0; while (!q.empty()) { Node current = lights[q.front()]; q.pop(); for (int neighbour_id : current.neighbours) { if (groups[neighbour_id] == -1) { groups[neighbour_id] = groups[current.id] == 0 ? 1 : 0; q.push(neighbour_id); } else if (groups[neighbour_id] == groups[current.id]) { return true; } } } return false; } long long solve_compact(Node node, int size, string current, vector<Node> &lights) { // cout << "Solving " << node.id << " " << size << endl; if (size == 1) { return 1; } // cout << "Solving " << node.id << " " << size << endl; if (size > 2 && find_odd_cycle(node, lights)) { return my_power(size - 1); } vector<vector<int>> value = value_by_parity(lights, node.id, current); // cout << "Parity" << endl; // cout << value[0][0] << " " << value[0][1] << endl; // cout << value[1][0] << " " << value[1][1] << endl; if (value[0][0] + value[1][1] > value[0][1] + value[1][0]) { swap(value[0][0], value[0][1]); swap(value[1][0], value[1][1]); } int big_start = value[0][0] + value[1][1]; int bigger = max(value[0][0] + value[0][1], value[1][0] + value[1][1]); int smaller = min(value[0][0] + value[0][1], value[1][0] + value[1][1]); long long result = 0; int i = 0; while(true) { // cout << "Binomial " << bigger << " " << big_start - i << endl; // cout << "Binomial " << smaller << " " << i << endl; result += BinomialCoefficient(bigger, big_start - i) * BinomialCoefficient(smaller, i); result %= BIG_PRIME; if (i == smaller or big_start - i == 0) { break; } i++; } return result; // return brute(current, node, lights); } int main() { std::ios_base::sync_with_stdio(false); std::cin.tie(0); int n, m; cin >> n >> m; vector<Node> lights; for (int i = 0; i < n; i++) { Node node = Node(); node.id = i; lights.push_back(node); } string current = ""; for (int i = 0; i < n; i++) { string c; cin >> c; current += c; } // cout << current << endl; // cout << "blocked: " << compress(current).size() << " - " << compress(current) << endl; for (int i = 0; i < m; i++) { int a, b; cin >> a >> b; // lights[a - 1].neighbours.push_back(lights[b - 1]); // lights[b - 1].neighbours.push_back(lights[a - 1]); lights[a - 1].neighbours.push_back(b - 1); lights[b - 1].neighbours.push_back(a - 1); // cout << "neighbours " << a << " " << b << endl; } vector<pair<Node, int>> splited = split_graph(lights); // cout << "OK" << endl; long long result = 1; for (auto [node, size] : splited) { // cout << "Splited " << node.id << " " << size << endl; long long tmp = solve_compact(node, size, current, lights); // cout << tmp << endl; result *= tmp; result %= BIG_PRIME; } cout << result << endl; return 0; } |