// clang-format off #include<bits/stdc++.h> using namespace std; using LL=long long; #define FOR(i,l,r) for(auto i=(l);i<=(r);++i) #define REP(i,n) FOR(i,0,(n)-1) #define ssize(x) int(x.size()) template<class A,class B>auto&operator<<(ostream&o,pair<A,B>p){return o<<"("<<p.first<<", "<<p.second<<")";} template<class T>auto operator<<(ostream&o,T x)->decltype(x.end(),o){o<<"{";int i=0;for(auto e:x)o<<(", ")+2*!i++<<e;return o<<"}";} #ifdef DEBUG #define debug(x...) cerr<<"["#x"]: ",[](auto...$){((cerr<<$<<"; "),...);}(x),cerr<<'\n' #else #define debug(...) {} #endif // clang-format on #include "dzilib.h" using lhash_t = unsigned __int128; using hash_t = uint64_t; const hash_t hash_p = 1423; const hash_t hash_m = 9034297094444475691; hash_t mul(const hash_t& a, const hash_t& b) { return (unsigned __int128)1 * a * b % hash_m; } // Global variables const LL max_interest_sqrt = 1 << 15; int ntests, ntotal_queries, nqueries; LL max_x, query_limit, max_interest; unordered_map<LL, int> tau_cache; vector<LL> small_prime; int get_tau(const LL& val); void gen_small_prime(); int main() { cin.tie(0)->sync_with_stdio(0); ntests = GetT(), max_x = GetN(); ntotal_queries = GetQ(), query_limit = GetC(); nqueries = ntotal_queries / ntests; max_interest = max_x + nqueries - 1; if (max_x <= 1000000) { // the smallest prime dividing x vector<LL> small_prime(max_interest + 1); small_prime[1] = 1; for (LL p = 3; p <= max_interest; p += 2) { if (small_prime[p]) continue; for (LL mul = p; mul <= max_interest; mul += p) small_prime[mul] = p; } // calculate tau for every number vector<int> tau(max_interest + 1, 1); for (LL val = 2; val <= max_interest; ++val) { LL x = val, last_prime = 0, exp = 1; x >>= __builtin_ctzll(val); tau[val] *= __builtin_ctzll(val) + 1; while (last_prime != 1) { const auto& p = small_prime[x]; if (last_prime == p) ++exp; else { tau[val] *= exp; last_prime = p, exp = 2; } x /= p; } } nqueries = 17; map<vector<int>, LL> seq_to_val; for (LL x = 1; x <= max_x; ++x) seq_to_val[vector<int>(tau.begin() + x, tau.begin() + x + nqueries)] = x; while (ntests--) { vector<int> seq(nqueries); REP (i, nqueries) seq[i] = Ask(i); debug(seq); Answer(seq_to_val[seq]); } return 0; } gen_small_prime(); nqueries = min(1000, nqueries); while (ntests--) { vector<int> seq(nqueries); unordered_set<hash_t> ranges; REP (i, nqueries) seq[i] = Ask(i); REP (start, nqueries) { lhash_t h = 0; FOR (i, start, nqueries - 1) { h *= hash_p; h += seq[i]; h %= hash_m; ranges.insert(h); } } debug(ssize(ranges)); for (LL base = nqueries; base <= max_interest; base += nqueries) { lhash_t h = get_tau(base); if (!ranges.contains(h)) continue; LL from = base, to = base; // try to go further as much as its possible lhash_t h_pow = hash_p; while (to < max_interest && from + nqueries - 1 > to) { lhash_t next_h = (h * hash_p + get_tau(to + 1)) % hash_m; if (!ranges.contains(next_h)) break; h = next_h; to += 1; h_pow *= hash_p; h_pow %= hash_m; } // maybe we will have to go back while (from + nqueries - 1 > to) { lhash_t next_h = (h + h_pow * get_tau(from - 1)) % hash_m; if (!ranges.contains(next_h)) break; h = next_h; from -= 1; h_pow *= hash_p; h_pow %= hash_m; } // success if (from + nqueries - 1 == to) { Answer(from); break; } } } #ifdef LOCAL system("grep VmPeak /proc/$PPID/status >&2"); #endif return 0; } int get_tau(const LL& val) { auto it = tau_cache.find(val); if (it == tau_cache.end()) { it = tau_cache.insert({val, 1}).first; LL x = val, mul; x >>= __builtin_ctzll(val); it->second *= __builtin_ctzll(val) + 1; for (const auto& p : small_prime) { if (p * p > x) break; mul = 1; while (x % p == 0) ++mul, x /= p; it->second *= mul; } if (x > 1) it->second *= 2; // one prime exponent left } return it->second; } void gen_small_prime() { vector<bool> sieve(max_interest_sqrt); small_prime.emplace_back(2); for (LL p = 3; p <= max_interest_sqrt; p += 2) { if (sieve[p]) continue; small_prime.emplace_back(p); for (LL mul = p << 1; mul * mul <= max_interest_sqrt; mul += p) sieve[p] = true; } }
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 | // clang-format off #include<bits/stdc++.h> using namespace std; using LL=long long; #define FOR(i,l,r) for(auto i=(l);i<=(r);++i) #define REP(i,n) FOR(i,0,(n)-1) #define ssize(x) int(x.size()) template<class A,class B>auto&operator<<(ostream&o,pair<A,B>p){return o<<"("<<p.first<<", "<<p.second<<")";} template<class T>auto operator<<(ostream&o,T x)->decltype(x.end(),o){o<<"{";int i=0;for(auto e:x)o<<(", ")+2*!i++<<e;return o<<"}";} #ifdef DEBUG #define debug(x...) cerr<<"["#x"]: ",[](auto...$){((cerr<<$<<"; "),...);}(x),cerr<<'\n' #else #define debug(...) {} #endif // clang-format on #include "dzilib.h" using lhash_t = unsigned __int128; using hash_t = uint64_t; const hash_t hash_p = 1423; const hash_t hash_m = 9034297094444475691; hash_t mul(const hash_t& a, const hash_t& b) { return (unsigned __int128)1 * a * b % hash_m; } // Global variables const LL max_interest_sqrt = 1 << 15; int ntests, ntotal_queries, nqueries; LL max_x, query_limit, max_interest; unordered_map<LL, int> tau_cache; vector<LL> small_prime; int get_tau(const LL& val); void gen_small_prime(); int main() { cin.tie(0)->sync_with_stdio(0); ntests = GetT(), max_x = GetN(); ntotal_queries = GetQ(), query_limit = GetC(); nqueries = ntotal_queries / ntests; max_interest = max_x + nqueries - 1; if (max_x <= 1000000) { // the smallest prime dividing x vector<LL> small_prime(max_interest + 1); small_prime[1] = 1; for (LL p = 3; p <= max_interest; p += 2) { if (small_prime[p]) continue; for (LL mul = p; mul <= max_interest; mul += p) small_prime[mul] = p; } // calculate tau for every number vector<int> tau(max_interest + 1, 1); for (LL val = 2; val <= max_interest; ++val) { LL x = val, last_prime = 0, exp = 1; x >>= __builtin_ctzll(val); tau[val] *= __builtin_ctzll(val) + 1; while (last_prime != 1) { const auto& p = small_prime[x]; if (last_prime == p) ++exp; else { tau[val] *= exp; last_prime = p, exp = 2; } x /= p; } } nqueries = 17; map<vector<int>, LL> seq_to_val; for (LL x = 1; x <= max_x; ++x) seq_to_val[vector<int>(tau.begin() + x, tau.begin() + x + nqueries)] = x; while (ntests--) { vector<int> seq(nqueries); REP (i, nqueries) seq[i] = Ask(i); debug(seq); Answer(seq_to_val[seq]); } return 0; } gen_small_prime(); nqueries = min(1000, nqueries); while (ntests--) { vector<int> seq(nqueries); unordered_set<hash_t> ranges; REP (i, nqueries) seq[i] = Ask(i); REP (start, nqueries) { lhash_t h = 0; FOR (i, start, nqueries - 1) { h *= hash_p; h += seq[i]; h %= hash_m; ranges.insert(h); } } debug(ssize(ranges)); for (LL base = nqueries; base <= max_interest; base += nqueries) { lhash_t h = get_tau(base); if (!ranges.contains(h)) continue; LL from = base, to = base; // try to go further as much as its possible lhash_t h_pow = hash_p; while (to < max_interest && from + nqueries - 1 > to) { lhash_t next_h = (h * hash_p + get_tau(to + 1)) % hash_m; if (!ranges.contains(next_h)) break; h = next_h; to += 1; h_pow *= hash_p; h_pow %= hash_m; } // maybe we will have to go back while (from + nqueries - 1 > to) { lhash_t next_h = (h + h_pow * get_tau(from - 1)) % hash_m; if (!ranges.contains(next_h)) break; h = next_h; from -= 1; h_pow *= hash_p; h_pow %= hash_m; } // success if (from + nqueries - 1 == to) { Answer(from); break; } } } #ifdef LOCAL system("grep VmPeak /proc/$PPID/status >&2"); #endif return 0; } int get_tau(const LL& val) { auto it = tau_cache.find(val); if (it == tau_cache.end()) { it = tau_cache.insert({val, 1}).first; LL x = val, mul; x >>= __builtin_ctzll(val); it->second *= __builtin_ctzll(val) + 1; for (const auto& p : small_prime) { if (p * p > x) break; mul = 1; while (x % p == 0) ++mul, x /= p; it->second *= mul; } if (x > 1) it->second *= 2; // one prime exponent left } return it->second; } void gen_small_prime() { vector<bool> sieve(max_interest_sqrt); small_prime.emplace_back(2); for (LL p = 3; p <= max_interest_sqrt; p += 2) { if (sieve[p]) continue; small_prime.emplace_back(p); for (LL mul = p << 1; mul * mul <= max_interest_sqrt; mul += p) sieve[p] = true; } } |