1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
#include <iostream>
#include <vector>
#include "dzilib.h"
#include <algorithm>
#include <cmath>

using namespace std;

using u64 = uint64_t;
using u128 = uint64_t;
//using u128 = __uint128_t;


u64 binpower(u64 base, u64 e, u64 mod) {
    u64 result = 1;
    base %= mod;
    while (e) {
        if (e & 1)
            result = (u128)result * base % mod;
        base = (u128)base * base % mod;
        e >>= 1;
    }
    return result;
}

bool check_composite(u64 n, u64 a, u64 d, int s) {
    u64 x = binpower(a, d, n);
    if (x == 1 || x == n - 1)
        return false;
    for (int r = 1; r < s; r++) {
        x = (u128)x * x % n;
        if (x == n - 1)
            return false;
    }
    return true;
};

bool test_prime(u64 n) { // returns true if n is prime, else returns false.
    if (n < 2)
        return false;

    int r = 0;
    u64 d = n - 1;
    while ((d & 1) == 0) {
        d >>= 1;
        r++;
    }

    for (int a : {2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37}) {
        if (n == a)
            return true;
        if (check_composite(n, a, d, r))
            return false;
    }
    return true;
}

bool isPerfectSquare(long double x)
{
    // Find floating point value of
    // square root of x.
    if (x >= 0) {

        long long sr = sqrt(x);

        // if product of square root 
        //is equal, then
        // return T/F
        return (sr * sr == x);
    }
    // else return false if n<0
    return false;
}

int tau(long long n, vector<int> &primes) {
    int ans = 1;

    for (int i = 0; i < primes.size(); i++) {
        if (primes[i] * primes[i] * primes[i] > n)
            break;
        
        int count = 1;
        while (n % primes[i] == 0) {
            n /= primes[i];
            count++;
        }
        ans *= count;
    }

    if (test_prime(n)) {
        ans *= 2;
    }
    else if (isPerfectSquare(n) && test_prime(sqrt(n))) {
        ans *= 3;
    }
    else if (n != 1) {
        ans *= 4;
    }

    return ans;
}



int main()
{
    int primes_number = 1000050;
    vector<bool> is_prime(primes_number + 1, true);
    is_prime[0] = is_prime[1] = false;
    for (int i = 2; i * i <= primes_number; i++) {
        if (is_prime[i]) {
            for (int j = i * i; j <= primes_number; j += i)
                is_prime[j] = false;
        }
    }

    vector<int> primes;

    for (int i = 0; i < is_prime.size(); i++) {
        if (is_prime[i]) {
            primes.push_back(i);
        }
    }




    int t = GetT();
    int q = GetQ();
    long long c = GetC();
    long long n = GetN();

    

    vector<int> taus;

    for (int i = 0; i <= 1000200; i++) {
        //cout << i << ": " << tau(i, primes) << endl;
        taus.push_back(tau(i, primes));
    }

    // &T, &N, &Q, &C

    while (t--) {
        vector<int> observed_taus;

        for (int i = 0; i < 100; i++) {
            observed_taus.push_back(Ask(i));
        }

        auto it = search(begin(taus), end(taus), begin(observed_taus), end(observed_taus));

        if (it != end(taus)) {
            //cout << "found at offset " << distance(taus.begin(), it) << endl;
            Answer(distance(taus.begin(), it));
        }
        else {
            //cout << "not found" << endl;
            Answer(1000);
        }
    }
    return 0;
}