1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
from resource import RLIMIT_CPU

import numpy as np
#operation, set1, set2)

def make_set(inpt):
    if (len(inpt) == 2):
        return set_negation(inpt[1])
    if (inpt[0] == 1):
        return set_sum(max(inpt[1], inpt[2]), min(inpt[1], inpt[2]))
    else:
        return set_overlap(max(inpt[1], inpt[2]), min(inpt[1], inpt[2]))


def set_sum(set1, set2):
    global n

    res = []
    # add interval of 1,2
    # limit
    # if num %llm = 0
    # add to i and n
    # add lower
    # check if - +
    if(set1>n):
        if(mars[set1-n-1].size==0):
            if(set2>n):
                return  mars[set2-n-1]
            return get_set_of_x(set2)
        elif(mars[set1-n-1][0]==0):
            return np.array([0])
        if(set2>n):
            if(mars[set2-n-1].size==0):
                return  mars[set1-n-1]
            elif(mars[set2-n-1][0]==0):
                return  np.array([0])

            if(mars[set2-n-1][0]>0):
                


                if(mars[set1-n-1][0]>0):
                    return  sum_of_positive_sets(mars[set1-n-1],mars[set2-n-1])

                else:
                        return sum_of_negpos_sets(np.negative(mars[set1-n-1]),mars[set2-n-1])
            elif(mars[set1-n-1][0]>0):
                # 2 neg, 1 pos
                return sum_of_negpos_sets(np.negative(mars[set2-n-1]),mars[set1-n-1])
            else:

                res = overlap_defined_pos_sets(np.negative(mars[set1-n-1]), np.negative(mars[set2-n-1]))
                if(res.size==0):
                    return  np.array([0])
                elif(res[0]==0):
                    return np.array([])

                return np.negative(res)
        elif(mars[set1-n-1][0]<0):
            return sum_of_negpos_sets(np.negative(mars[set1-n-1]),get_set_of_x(set2))

        else:
            return  sum_of_positive_sets(mars[set1-n-1],get_set_of_x(set2))
    else:
        return sum_of_positive_sets(get_set_of_x(set1),get_set_of_x(set2))

def sum_of_negpos_sets(negset, posset):
    res = []





    for i in range(negset.size):
        if(negset[i] not in posset):
            res.append(negset[i])
    if(res==[]):
        return np.array([0])
    return np.negative(np.array(res))

def sum_of_positive_sets(set1,set2):

    return  np.sort(np.unique(np.concatenate([set1,set2])))

def set_overlap(set1, set2):
    global n

    if(set1>n):
        if(mars[set1-n-1].size==0):
            return np.array([])
        elif(mars[set1-n-1][0]==0):
            if(set2>n):
                return mars[set2-n-1]
            return  get_set_of_x(set2)


    #    if(mars[set1-n-1]==None ):
     #       return np.array([], type=np.int_)
        if(set2>n):
            if(mars[set2-n-1].size== 0):
                return np.array([])
            elif(mars[set2-n-1][0]==0):

                return mars[set1-n-1]
 
         #   print(mars[set2 - n - 1])

          #  if (mars[set2 - n - 1] == None):
           #     return np.array([], type=np.int_)
            if(mars[set2 - n - 1][0]>0):
                if (mars[set1 - n-1][0] > 0):
                    return overlap_defined_pos_sets(mars[set1 - n-1], mars[set2-n-1])
                else:
                    return overlap_defined_neg_sets(mars[set1-n-1],mars[set2-n-1])
            else:
                return overlap_defined_neg_sets(mars[set2-n-1], mars[set1-n-1], (mars[set1-n-1][0]<0))

        else:
        
            if(mars[set1-n-1][0]>0):
                return overlap_defined_pos_sets(mars[set1-n-1], get_set_of_x(set2))
            else:
                return  overlap_defined_neg_sets(mars[set1-n-1],get_set_of_x(set2))
    else:

        return overlap_number_sets(set1,set2)

def overlap_defined_pos_sets(set1,set2):
    i = np.int_(0)
    k = np.int_(0)
    res = []

    np.lcm(set1[i],set2[k])
    while(i<set1.size and k<set2.size):
        if(set1[i]>set2[k]):

            k+=1
        elif(set2[k]>set1[i]):
            i+=1
        else:
            res.append(set1[i])
            k+=1
            i+=1
    return np.array(res)
def overlap_defined_neg_sets(set1,set2,both=False):
    if(both==True):
        return  np.negative(sum_of_positive_sets(np.negative(set1),np.negative(set2)))
    else:
        #set1 is negative
        res = []
        i = np.int_(0)
        k= np.int_(0)
        while(i<set1.size and k<set2.size):
            ab = abs(set1[i])
            if(ab == set2[k]):
                k+=1
                i+=1
            elif(ab<set2[k]):

                i+=1
                if(i>=set1.size):
                    while(k<set2.size):
                        res.append(set2[k])
                        k+=1

            else:
                res.append(set2[k])
                k+=1
        #foraeach thing in negative set, check if it's also in the positive set, if so, delete

    return  np.array(res)

def overlap_number_sets(set1,set2):
    '''
    if (set2 == 209 and set1 == 805):
        print("lcm")
        print(np.lcm(set1, set2))
        print(np.lcm(set1, set2) > n)
        print(get_set_of_x(np.lcm(set1,set2),0))
        '''
    return  get_set_of_x(np.lcm(set1,set2),0)
# if m[set1]<0
def set_negation(set1):
    global n
    if (set1 > n):
        if(mars[set1-n-1].size>0):

            if mars[set1-n-1][0]==0:
                return  np.array([])
            return  np.negative(mars[set1-n-1]) 
        else:
            return  np.array([0])


    else:
        return get_set_of_x(set1,True)
    '''result = mars.copy()
        for n in range(len(m[set1 - n])):

            result[set1 - n][n] *= -1

        return result'''


def get_set_of_x(x, neg= False):


    global n

    if(x>n):
        #this is a result of lcm
        if(neg==True):
            return  np.array([0])
        return  np.array([])

    limit = np.int_(n/x)
    res = np.array([0]*limit )
    i = 1

    while(i<=limit):
        res[i-1]=i*x
        i+=1
        # (-1) * n
  #  res = np.sort(res)
    if(neg == True):
        res = np.negative(res)


    return res
def respond_to_query(inpt):
    if(inpt[0]>n+m):
        print("NIE")
        return
    if(inpt[0]>n):
        if(mars[inpt[0]-n-1].size==0):

            print("NIE")
            return

        if(mars[inpt[0]-n-1][0]==0):
            print("TAK")
            return 
        if(mars[inpt[0]-n-1][0]<0 ):
            if (inpt[1] in np.negative(mars[inpt[0] - n - 1])):
                print("NIE")
            else:
                print("TAK")
        else:
            if(inpt[1] in mars[inpt[0]-n-1]):
                print("TAK")
            else:
                print("NIE")
    else:
        if(inpt[1]%inpt[0]==0):
            print("TAK")
        else:
            print("NIE")


npt = np.array(input().split(" ")).astype(np.int_)

n = np.int_(npt[0])
m = np.int_(npt[1])
q = np.int_(npt[2])
 
 
mars = []
#maybe add n ars if perfomance isn't up to snuff?


#mars = m arrays
#
'''
while True:
    npt = np.array(input().split(" "), np.int_)
    mars.append(make_set(npt))
    print(mars[len(mars)-1])
'''
for i in range(m):
    npt = np.array(input().split(" "),np.int_)
    res =                  make_set(npt)

    mars.append(res)
    '''
    if(npt[0]==3 and npt[1]== 11756):
        print("aaaa")
        print(res)

        print(npt)
    if(i+1+n==39665):
        print("59726")
        print("bbbb")
        print(npt)
        print(res)
        print("this res has been copied to index")
        print(i+n)


'''
for i in range(q):
    respond_to_query(np.array(input().split(" "), np.int_))
    pass
'''
    a = input()
    if(i==22107):
        print("line 22108")
        print(a)
        b = np.array(a.split(" "), np.int_)
        print(respond_to_query(b))
        print(mars[b[0]-n-1])
'''