1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
//Mateusz Kussowski
//PA 2025 day 1 A teleport

#include <iostream>
#include <vector>
#include <string>
#include <algorithm>
#include <limits>
using namespace std;

int find_furthest(int n, vector<vector<int>> &D, int v){
    int furthest = 0, furthest_node = 0;
    for (int i = 0; i < n; i++){
        if(D[v][i] > furthest){
            furthest = D[v][i];
            furthest_node = i;
        }
    }
    return furthest_node;
}

int find_furthest_with_tp(int n, vector<vector<int>> &D, int v, int x, int y){ // teleport from x to y
    int furthest = 0, furthest_node = 0;
    for (int i = 0; i < n; i++){
        int eff = min({ D[i][x] + D[y][v], D[i][y] + D[x][v], D[i][v] });
        if(eff > furthest){
            furthest = eff;
            furthest_node = i;
        }
    }
    return furthest_node;
}

int main(){
    ios::sync_with_stdio(0);
    cin.tie(0);
 
    int t;
    cin >> t;
    while(t--){
        int n;
        cin >> n;
        vector<string> graph(n);
        for (int i = 0; i < n; i++){
            cin >> graph[i];
        }

        const int INF = 1e9;
        vector<vector<int>> D(n, vector<int>(n, INF));
        for (int i = 0; i < n; i++){
            for (int j = 0; j < n; j++){
                if(i == j) {
                    D[i][j] = 0;
                }
                else if(graph[i][j] == '1'){
                    D[i][j] = 1;
                }
            }
        }
 
        for (int k = 0; k < n; k++){
            for (int i = 0; i < n; i++){
                for (int j = 0; j < n; j++){
                    if(D[i][k] + D[k][j] < D[i][j]){
                        D[i][j] = D[i][k] + D[k][j];
                    }
                }
            }
        }

        int origDiam = 0;
        int u, v;
        for(int i = 0; i < n; i++){
            for (int j = 0; j < n; j++){
                origDiam = max(origDiam, D[i][j]);
                if(D[i][j] == origDiam){
                    u = i;
                    v = j;
                }
            }
        }

        //find a vertex that is the furthest from u and v
        int midvertex = 0, score = min({ D[u][0], D[v][0] });
        for(int i = 1; i < n; i++){
            int eff = min({ D[u][i], D[v][i] });
            if(eff > score){
                score = eff;
                midvertex = i;
            }
        }

        int u0 = midvertex;
        for(int i = 0; i < 3; ++i) u0 = find_furthest(n, D, u0);
        int v0 = find_furthest(n, D, u0);

        int u1 = find_furthest(n, D, 14 % n);
        for(int i = 0; i < 3; ++i) u1 = find_furthest(n, D, u1);
        int v1 = find_furthest(n, D, u1);

        int u2 = find_furthest(n, D, 27 % n);
        for(int i = 0; i < 3; ++i) u2 = find_furthest(n, D, u2);
        int v2 = find_furthest(n, D, u2);

        int u3 = find_furthest(n, D, 42 % n);
        for(int i = 0; i < 3; ++i) u3 = find_furthest(n, D, u3);
        int v3 = find_furthest(n, D, u3);

        int u4 = find_furthest(n, D, 55 % n);
        for(int i = 0; i < 3; ++i) u4 = find_furthest(n, D, u4);
        int v4 = find_furthest(n, D, u4);

        int u5 = find_furthest(n, D, 68 % n);
        for(int i = 0; i < 3; ++i) u5 = find_furthest(n, D, u5);
        int v5 = find_furthest(n, D, u5);

        int u6 = find_furthest(n, D, 71 % n);
        for(int i = 0; i < 3; ++i) u6 = find_furthest(n, D, u6);
        int v6 = find_furthest(n, D, u6);

        int u7 = find_furthest(n, D, 84 % n);
        for(int i = 0; i < 3; ++i) u7 = find_furthest(n, D, u7);
        int v7 = find_furthest(n, D, u7);

        int u8 = find_furthest(n, D, 97 % n);
        for(int i = 0; i < 3; ++i) u8 = find_furthest(n, D, u8);
        int v8 = find_furthest(n, D, u8);

        u = u0;
        v = v0;
        if(D[u1][v1] > D[u][v]){
            u = u1;
            v = v1;
        }
        if(D[u2][v2] > D[u][v]){
            u = u2;
            v = v2;
        }
        if(D[u3][v3] > D[u][v]){
            u = u3;
            v = v3;
        }
        if(D[u4][v4] > D[u][v]){
            u = u4;
            v = v4;
        }
        if(D[u5][v5] > D[u][v]){
            u = u5;
            v = v5;
        }
        if(D[u6][v6] > D[u][v]){
            u = u6;
            v = v6;
        }
        if(D[u7][v7] > D[u][v]){
            u = u7;
            v = v7;
        }
        if(D[u8][v8] > D[u][v]){
            u = u8;
            v = v8;
        }

        int candidate = 0;
        for (int a = 0; a < n; a++){
            for (int b = 0; b < n; b++){
                int eff = min({ D[a][b], D[a][u] + D[v][b], D[a][v] + D[u][b] });
                candidate = max(candidate, eff);
            }
        }

        int old_u = u, old_v = v;
 
        int best = candidate;
        for (int u = 0; u < n; u++){
            for (int v = u + 1; v < n; v++){
                int temp = find_furthest_with_tp(n, D, midvertex, u, v);
                for(int i = 0; i < 1; ++i) temp = find_furthest_with_tp(n, D, temp, u, v);
                int temp2 = find_furthest_with_tp(n, D, temp, u, v);

                int Btemp = find_furthest_with_tp(n, D, u, u, v);
                for(int i = 0; i < 1; ++i) Btemp = find_furthest_with_tp(n, D, Btemp, u, v);
                int Btemp2 = find_furthest_with_tp(n, D, Btemp, u, v);

                if(min({ D[temp][temp2], D[temp][u] + D[v][temp2], D[temp][v] + D[u][temp2] }) < min({ D[Btemp][Btemp2], D[Btemp][u] + D[v][Btemp2], D[Btemp][v] + D[u][Btemp2] })){
                    temp = Btemp;
                    temp2 = Btemp2;
                }
                

                int candidate = min({ D[temp][temp2], D[temp][u] + D[v][temp2], D[temp][v] + D[u][temp2] });
                bool earlyBreak = false;
                for (int a = 0; a < n && !earlyBreak; a++){
                    for (int b = a + 1; b < n; b++){
                        int eff = min({ D[a][b], D[a][u] + D[v][b], D[a][v] + D[u][b] });
                        candidate = max(candidate, eff);
                        if(candidate >= best){
                            earlyBreak = true;
                            break;
                        }
                    }
                }
                best = min(best, candidate);

                if(best <= (origDiam)/2){
                    break;
                }
            }
            if(best <= (origDiam)/2){
                break;
            }
        }
 
        cout << best << "\n";
    }
    return 0;
}