//Mateusz Kussowski
//PA 2025 day 1 A teleport
#include <iostream>
#include <vector>
#include <string>
#include <algorithm>
#include <limits>
using namespace std;
int find_furthest(int n, vector<vector<int>> &D, int v){
int furthest = 0, furthest_node = 0;
for (int i = 0; i < n; i++){
if(D[v][i] > furthest){
furthest = D[v][i];
furthest_node = i;
}
}
return furthest_node;
}
int find_furthest_with_tp(int n, vector<vector<int>> &D, int v, int x, int y){ // teleport from x to y
int furthest = 0, furthest_node = 0;
for (int i = 0; i < n; i++){
int eff = min({ D[i][x] + D[y][v], D[i][y] + D[x][v], D[i][v] });
if(eff > furthest){
furthest = eff;
furthest_node = i;
}
}
return furthest_node;
}
int main(){
ios::sync_with_stdio(0);
cin.tie(0);
int t;
cin >> t;
while(t--){
int n;
cin >> n;
vector<string> graph(n);
for (int i = 0; i < n; i++){
cin >> graph[i];
}
const int INF = 1e9;
vector<vector<int>> D(n, vector<int>(n, INF));
for (int i = 0; i < n; i++){
for (int j = 0; j < n; j++){
if(i == j) {
D[i][j] = 0;
}
else if(graph[i][j] == '1'){
D[i][j] = 1;
}
}
}
for (int k = 0; k < n; k++){
for (int i = 0; i < n; i++){
for (int j = 0; j < n; j++){
if(D[i][k] + D[k][j] < D[i][j]){
D[i][j] = D[i][k] + D[k][j];
}
}
}
}
int origDiam = 0;
int u, v;
for(int i = 0; i < n; i++){
for (int j = 0; j < n; j++){
origDiam = max(origDiam, D[i][j]);
if(D[i][j] == origDiam){
u = i;
v = j;
}
}
}
//find a vertex that is the furthest from u and v
int midvertex = 0, score = min({ D[u][0], D[v][0] });
for(int i = 1; i < n; i++){
int eff = min({ D[u][i], D[v][i] });
if(eff > score){
score = eff;
midvertex = i;
}
}
int u0 = midvertex;
for(int i = 0; i < 3; ++i) u0 = find_furthest(n, D, u0);
int v0 = find_furthest(n, D, u0);
int u1 = find_furthest(n, D, 14 % n);
for(int i = 0; i < 3; ++i) u1 = find_furthest(n, D, u1);
int v1 = find_furthest(n, D, u1);
int u2 = find_furthest(n, D, 27 % n);
for(int i = 0; i < 3; ++i) u2 = find_furthest(n, D, u2);
int v2 = find_furthest(n, D, u2);
int u3 = find_furthest(n, D, 42 % n);
for(int i = 0; i < 3; ++i) u3 = find_furthest(n, D, u3);
int v3 = find_furthest(n, D, u3);
int u4 = find_furthest(n, D, 55 % n);
for(int i = 0; i < 3; ++i) u4 = find_furthest(n, D, u4);
int v4 = find_furthest(n, D, u4);
int u5 = find_furthest(n, D, 68 % n);
for(int i = 0; i < 3; ++i) u5 = find_furthest(n, D, u5);
int v5 = find_furthest(n, D, u5);
int u6 = find_furthest(n, D, 71 % n);
for(int i = 0; i < 3; ++i) u6 = find_furthest(n, D, u6);
int v6 = find_furthest(n, D, u6);
int u7 = find_furthest(n, D, 84 % n);
for(int i = 0; i < 3; ++i) u7 = find_furthest(n, D, u7);
int v7 = find_furthest(n, D, u7);
int u8 = find_furthest(n, D, 97 % n);
for(int i = 0; i < 3; ++i) u8 = find_furthest(n, D, u8);
int v8 = find_furthest(n, D, u8);
u = u0;
v = v0;
if(D[u1][v1] > D[u][v]){
u = u1;
v = v1;
}
if(D[u2][v2] > D[u][v]){
u = u2;
v = v2;
}
if(D[u3][v3] > D[u][v]){
u = u3;
v = v3;
}
if(D[u4][v4] > D[u][v]){
u = u4;
v = v4;
}
if(D[u5][v5] > D[u][v]){
u = u5;
v = v5;
}
if(D[u6][v6] > D[u][v]){
u = u6;
v = v6;
}
if(D[u7][v7] > D[u][v]){
u = u7;
v = v7;
}
if(D[u8][v8] > D[u][v]){
u = u8;
v = v8;
}
int candidate = 0;
for (int a = 0; a < n; a++){
for (int b = 0; b < n; b++){
int eff = min({ D[a][b], D[a][u] + D[v][b], D[a][v] + D[u][b] });
candidate = max(candidate, eff);
}
}
int old_u = u, old_v = v;
int best = candidate;
for (int u = 0; u < n; u++){
for (int v = u + 1; v < n; v++){
int temp = find_furthest_with_tp(n, D, midvertex, u, v);
for(int i = 0; i < 1; ++i) temp = find_furthest_with_tp(n, D, temp, u, v);
int temp2 = find_furthest_with_tp(n, D, temp, u, v);
int Btemp = find_furthest_with_tp(n, D, u, u, v);
for(int i = 0; i < 1; ++i) Btemp = find_furthest_with_tp(n, D, Btemp, u, v);
int Btemp2 = find_furthest_with_tp(n, D, Btemp, u, v);
if(min({ D[temp][temp2], D[temp][u] + D[v][temp2], D[temp][v] + D[u][temp2] }) < min({ D[Btemp][Btemp2], D[Btemp][u] + D[v][Btemp2], D[Btemp][v] + D[u][Btemp2] })){
temp = Btemp;
temp2 = Btemp2;
}
int candidate = min({ D[temp][temp2], D[temp][u] + D[v][temp2], D[temp][v] + D[u][temp2] });
bool earlyBreak = false;
for (int a = 0; a < n && !earlyBreak; a++){
for (int b = a + 1; b < n; b++){
int eff = min({ D[a][b], D[a][u] + D[v][b], D[a][v] + D[u][b] });
candidate = max(candidate, eff);
if(candidate >= best){
earlyBreak = true;
break;
}
}
}
best = min(best, candidate);
if(best <= (origDiam)/2){
break;
}
}
if(best <= (origDiam)/2){
break;
}
}
cout << best << "\n";
}
return 0;
}
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 | //Mateusz Kussowski //PA 2025 day 1 A teleport #include <iostream> #include <vector> #include <string> #include <algorithm> #include <limits> using namespace std; int find_furthest(int n, vector<vector<int>> &D, int v){ int furthest = 0, furthest_node = 0; for (int i = 0; i < n; i++){ if(D[v][i] > furthest){ furthest = D[v][i]; furthest_node = i; } } return furthest_node; } int find_furthest_with_tp(int n, vector<vector<int>> &D, int v, int x, int y){ // teleport from x to y int furthest = 0, furthest_node = 0; for (int i = 0; i < n; i++){ int eff = min({ D[i][x] + D[y][v], D[i][y] + D[x][v], D[i][v] }); if(eff > furthest){ furthest = eff; furthest_node = i; } } return furthest_node; } int main(){ ios::sync_with_stdio(0); cin.tie(0); int t; cin >> t; while(t--){ int n; cin >> n; vector<string> graph(n); for (int i = 0; i < n; i++){ cin >> graph[i]; } const int INF = 1e9; vector<vector<int>> D(n, vector<int>(n, INF)); for (int i = 0; i < n; i++){ for (int j = 0; j < n; j++){ if(i == j) { D[i][j] = 0; } else if(graph[i][j] == '1'){ D[i][j] = 1; } } } for (int k = 0; k < n; k++){ for (int i = 0; i < n; i++){ for (int j = 0; j < n; j++){ if(D[i][k] + D[k][j] < D[i][j]){ D[i][j] = D[i][k] + D[k][j]; } } } } int origDiam = 0; int u, v; for(int i = 0; i < n; i++){ for (int j = 0; j < n; j++){ origDiam = max(origDiam, D[i][j]); if(D[i][j] == origDiam){ u = i; v = j; } } } //find a vertex that is the furthest from u and v int midvertex = 0, score = min({ D[u][0], D[v][0] }); for(int i = 1; i < n; i++){ int eff = min({ D[u][i], D[v][i] }); if(eff > score){ score = eff; midvertex = i; } } int u0 = midvertex; for(int i = 0; i < 3; ++i) u0 = find_furthest(n, D, u0); int v0 = find_furthest(n, D, u0); int u1 = find_furthest(n, D, 14 % n); for(int i = 0; i < 3; ++i) u1 = find_furthest(n, D, u1); int v1 = find_furthest(n, D, u1); int u2 = find_furthest(n, D, 27 % n); for(int i = 0; i < 3; ++i) u2 = find_furthest(n, D, u2); int v2 = find_furthest(n, D, u2); int u3 = find_furthest(n, D, 42 % n); for(int i = 0; i < 3; ++i) u3 = find_furthest(n, D, u3); int v3 = find_furthest(n, D, u3); int u4 = find_furthest(n, D, 55 % n); for(int i = 0; i < 3; ++i) u4 = find_furthest(n, D, u4); int v4 = find_furthest(n, D, u4); int u5 = find_furthest(n, D, 68 % n); for(int i = 0; i < 3; ++i) u5 = find_furthest(n, D, u5); int v5 = find_furthest(n, D, u5); int u6 = find_furthest(n, D, 71 % n); for(int i = 0; i < 3; ++i) u6 = find_furthest(n, D, u6); int v6 = find_furthest(n, D, u6); int u7 = find_furthest(n, D, 84 % n); for(int i = 0; i < 3; ++i) u7 = find_furthest(n, D, u7); int v7 = find_furthest(n, D, u7); int u8 = find_furthest(n, D, 97 % n); for(int i = 0; i < 3; ++i) u8 = find_furthest(n, D, u8); int v8 = find_furthest(n, D, u8); u = u0; v = v0; if(D[u1][v1] > D[u][v]){ u = u1; v = v1; } if(D[u2][v2] > D[u][v]){ u = u2; v = v2; } if(D[u3][v3] > D[u][v]){ u = u3; v = v3; } if(D[u4][v4] > D[u][v]){ u = u4; v = v4; } if(D[u5][v5] > D[u][v]){ u = u5; v = v5; } if(D[u6][v6] > D[u][v]){ u = u6; v = v6; } if(D[u7][v7] > D[u][v]){ u = u7; v = v7; } if(D[u8][v8] > D[u][v]){ u = u8; v = v8; } int candidate = 0; for (int a = 0; a < n; a++){ for (int b = 0; b < n; b++){ int eff = min({ D[a][b], D[a][u] + D[v][b], D[a][v] + D[u][b] }); candidate = max(candidate, eff); } } int old_u = u, old_v = v; int best = candidate; for (int u = 0; u < n; u++){ for (int v = u + 1; v < n; v++){ int temp = find_furthest_with_tp(n, D, midvertex, u, v); for(int i = 0; i < 1; ++i) temp = find_furthest_with_tp(n, D, temp, u, v); int temp2 = find_furthest_with_tp(n, D, temp, u, v); int Btemp = find_furthest_with_tp(n, D, u, u, v); for(int i = 0; i < 1; ++i) Btemp = find_furthest_with_tp(n, D, Btemp, u, v); int Btemp2 = find_furthest_with_tp(n, D, Btemp, u, v); if(min({ D[temp][temp2], D[temp][u] + D[v][temp2], D[temp][v] + D[u][temp2] }) < min({ D[Btemp][Btemp2], D[Btemp][u] + D[v][Btemp2], D[Btemp][v] + D[u][Btemp2] })){ temp = Btemp; temp2 = Btemp2; } int candidate = min({ D[temp][temp2], D[temp][u] + D[v][temp2], D[temp][v] + D[u][temp2] }); bool earlyBreak = false; for (int a = 0; a < n && !earlyBreak; a++){ for (int b = a + 1; b < n; b++){ int eff = min({ D[a][b], D[a][u] + D[v][b], D[a][v] + D[u][b] }); candidate = max(candidate, eff); if(candidate >= best){ earlyBreak = true; break; } } } best = min(best, candidate); if(best <= (origDiam)/2){ break; } } if(best <= (origDiam)/2){ break; } } cout << best << "\n"; } return 0; } |
English