#pragma GCC optimize("O3") #include <bits/stdc++.h> using namespace std; #define ll long long #define ld double #define pb push_back #define ff first #define ss second #define MOD 1000000009 #define INF 1000000019 #define INFL 1000000000000000099LL #define IP 26 #define rep(i, a, b) for (int i = (a); i < (b); ++i) #define sz(x) ((int)(x).size()) #define all(x) (x).begin(), (x).end() typedef vector<int> vi; /** * Author: Ludo Pulles, chilli, Simon Lindholm * Date: 2019-01-09 * License: CC0 * Source: http://neerc.ifmo.ru/trains/toulouse/2017/fft2.pdf (do read, it's excellent) Accuracy bound from http://www.daemonology.net/papers/fft.pdf * Description: fft(a) computes $\hat f(k) = \sum_x a[x] \exp(2\pi i \cdot k x / N)$ for all $k$. N must be a power of 2. Useful for convolution: \texttt{conv(a, b) = c}, where $c[x] = \sum a[i]b[x-i]$. For convolution of complex numbers or more than two vectors: FFT, multiply pointwise, divide by n, reverse(start+1, end), FFT back. Rounding is safe if $(\sum a_i^2 + \sum b_i^2)\log_2{N} < 9\cdot10^{14}$ (in practice $10^{16}$; higher for random inputs). Otherwise, use NTT/FFTMod. * Time: O(N \log N) with $N = |A|+|B|$ ($\tilde 1s$ for $N=2^{22}$) * Status: somewhat tested * Details: An in-depth examination of precision for both FFT and FFTMod can be found * here (https://github.com/simonlindholm/fft-precision/blob/master/fft-precision.md) */ //#pragma once typedef complex<double> C; typedef vector<double> vd; void fft(vector<C>& a) { int n = sz(a), L = 31 - __builtin_clz(n); static vector<complex<long double>> R(2, 1); static vector<C> rt(2, 1); // (^ 10% faster if double) for (static int k = 2; k < n; k *= 2) { R.resize(n); rt.resize(n); auto x = polar(1.0L, acos(-1.0L) / k); rep(i,k,2*k) rt[i] = R[i] = i&1 ? R[i/2] * x : R[i/2]; } vi rev(n); rep(i,0,n) rev[i] = (rev[i / 2] | (i & 1) << L) / 2; rep(i,0,n) if (i < rev[i]) swap(a[i], a[rev[i]]); for (int k = 1; k < n; k *= 2) for (int i = 0; i < n; i += 2 * k) rep(j,0,k) { // C z = rt[j+k] * a[i+j+k]; // (25% faster if hand-rolled) /// include-line auto x = (double *)&rt[j+k], y = (double *)&a[i+j+k]; /// exclude-line C z(x[0]*y[0] - x[1]*y[1], x[0]*y[1] + x[1]*y[0]); /// exclude-line a[i + j + k] = a[i + j] - z; a[i + j] += z; } } vd multiply(vd a, vd b) { if (a.empty() || b.empty()) return {}; vd res(sz(a) + sz(b) - 1); int L = 32 - __builtin_clz(sz(res)), n = 1 << L; vector<C> in(n), out(n); copy(all(a), begin(in)); rep(i,0,sz(b)) in[i].imag(b[i]); fft(in); for (C& x : in) x *= x; rep(i,0,n) out[i] = in[-i & (n - 1)] - conj(in[i]); fft(out); rep(i,0,sz(res)) res[i] = imag(out[i]) / (4 * n); return res; } ld a,b,c,d; ll n,K; vector<ld>liczby; vector<ld>prob[51007],pref[IP+4]; int main() { ios_base::sync_with_stdio(0);cin.tie(0); cin>>n>>K; cout<<setprecision(20); for(ll i=0;i<n;i++){ cin>>a; liczby.pb(a); } sort(liczby.begin(),liczby.end()); reverse(liczby.begin(),liczby.end()); n+=IP+4; for(ll i=0;i<IP+4;i++)liczby.pb(0); vector<ll>konce={0}; for(ll i=0;i<IP;i++){ konce.pb(((i+1)*n)/IP); prob[konce[i]+1]={(ld)1-liczby[konce[i]],0,liczby[konce[i]]}; for(ll j=konce[i]+2;j<=konce.back();j++){ prob[j].resize(prob[j-1].size() + 2, 0); for(ll k=0;k<prob[j-1].size();k++){ prob[j][k]+=prob[j-1][k]*((ld)1-liczby[j-1]); prob[j][k+2]+=prob[j-1][k]*liczby[j-1]; } } } //cout<<"faza 1: "<<flush; pref[0]={1}; for(int i=1;i<=IP;i++){ pref[i]=multiply(pref[i-1],prob[konce[i]]); pref[i].resize(1 + 2 * konce[i]); } for(ll i=1;i<=IP;i++){ for(ll j=pref[i].size()-2;j>=0;j--) pref[i][j]+=pref[i][j+1]; } for(ll i=n;i>0;i--){ prob[i]=prob[i-1]; } prob[1]={1}; ld wyn=0; konce[0]=-1; //cout<<"faza 2: "<<flush; for(ll i=0;i<IP;i++){ for(ll j=konce[i]+2;j<=konce[i+1]+1;j++){ ld akwyn=0; for(ll k=max(0LL,(ll)((prob[j].size()-1)/2+K-(pref[i].size()-1)/2));k<prob[j].size() && (pref[i].size()-1)/2+max((ll)-(pref[i].size()-1)/2,(ll)(K-(k-(prob[j].size()-1)/2)))<pref[i].size();k++){ akwyn+=prob[j][k]*pref[i][(pref[i].size()-1)/2+max((ll)-(pref[i].size()-1)/2,(ll)(K-(k-(prob[j].size()-1)/2)))]; } wyn=max(wyn,akwyn); } } cout<<fixed<<wyn; return 0; }
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 | #pragma GCC optimize("O3") #include <bits/stdc++.h> using namespace std; #define ll long long #define ld double #define pb push_back #define ff first #define ss second #define MOD 1000000009 #define INF 1000000019 #define INFL 1000000000000000099LL #define IP 26 #define rep(i, a, b) for (int i = (a); i < (b); ++i) #define sz(x) ((int)(x).size()) #define all(x) (x).begin(), (x).end() typedef vector<int> vi; /** * Author: Ludo Pulles, chilli, Simon Lindholm * Date: 2019-01-09 * License: CC0 * Source: http://neerc.ifmo.ru/trains/toulouse/2017/fft2.pdf (do read, it's excellent) Accuracy bound from http://www.daemonology.net/papers/fft.pdf * Description: fft(a) computes $\hat f(k) = \sum_x a[x] \exp(2\pi i \cdot k x / N)$ for all $k$. N must be a power of 2. Useful for convolution: \texttt{conv(a, b) = c}, where $c[x] = \sum a[i]b[x-i]$. For convolution of complex numbers or more than two vectors: FFT, multiply pointwise, divide by n, reverse(start+1, end), FFT back. Rounding is safe if $(\sum a_i^2 + \sum b_i^2)\log_2{N} < 9\cdot10^{14}$ (in practice $10^{16}$; higher for random inputs). Otherwise, use NTT/FFTMod. * Time: O(N \log N) with $N = |A|+|B|$ ($\tilde 1s$ for $N=2^{22}$) * Status: somewhat tested * Details: An in-depth examination of precision for both FFT and FFTMod can be found * here (https://github.com/simonlindholm/fft-precision/blob/master/fft-precision.md) */ //#pragma once typedef complex<double> C; typedef vector<double> vd; void fft(vector<C>& a) { int n = sz(a), L = 31 - __builtin_clz(n); static vector<complex<long double>> R(2, 1); static vector<C> rt(2, 1); // (^ 10% faster if double) for (static int k = 2; k < n; k *= 2) { R.resize(n); rt.resize(n); auto x = polar(1.0L, acos(-1.0L) / k); rep(i,k,2*k) rt[i] = R[i] = i&1 ? R[i/2] * x : R[i/2]; } vi rev(n); rep(i,0,n) rev[i] = (rev[i / 2] | (i & 1) << L) / 2; rep(i,0,n) if (i < rev[i]) swap(a[i], a[rev[i]]); for (int k = 1; k < n; k *= 2) for (int i = 0; i < n; i += 2 * k) rep(j,0,k) { // C z = rt[j+k] * a[i+j+k]; // (25% faster if hand-rolled) /// include-line auto x = (double *)&rt[j+k], y = (double *)&a[i+j+k]; /// exclude-line C z(x[0]*y[0] - x[1]*y[1], x[0]*y[1] + x[1]*y[0]); /// exclude-line a[i + j + k] = a[i + j] - z; a[i + j] += z; } } vd multiply(vd a, vd b) { if (a.empty() || b.empty()) return {}; vd res(sz(a) + sz(b) - 1); int L = 32 - __builtin_clz(sz(res)), n = 1 << L; vector<C> in(n), out(n); copy(all(a), begin(in)); rep(i,0,sz(b)) in[i].imag(b[i]); fft(in); for (C& x : in) x *= x; rep(i,0,n) out[i] = in[-i & (n - 1)] - conj(in[i]); fft(out); rep(i,0,sz(res)) res[i] = imag(out[i]) / (4 * n); return res; } ld a,b,c,d; ll n,K; vector<ld>liczby; vector<ld>prob[51007],pref[IP+4]; int main() { ios_base::sync_with_stdio(0);cin.tie(0); cin>>n>>K; cout<<setprecision(20); for(ll i=0;i<n;i++){ cin>>a; liczby.pb(a); } sort(liczby.begin(),liczby.end()); reverse(liczby.begin(),liczby.end()); n+=IP+4; for(ll i=0;i<IP+4;i++)liczby.pb(0); vector<ll>konce={0}; for(ll i=0;i<IP;i++){ konce.pb(((i+1)*n)/IP); prob[konce[i]+1]={(ld)1-liczby[konce[i]],0,liczby[konce[i]]}; for(ll j=konce[i]+2;j<=konce.back();j++){ prob[j].resize(prob[j-1].size() + 2, 0); for(ll k=0;k<prob[j-1].size();k++){ prob[j][k]+=prob[j-1][k]*((ld)1-liczby[j-1]); prob[j][k+2]+=prob[j-1][k]*liczby[j-1]; } } } //cout<<"faza 1: "<<flush; pref[0]={1}; for(int i=1;i<=IP;i++){ pref[i]=multiply(pref[i-1],prob[konce[i]]); pref[i].resize(1 + 2 * konce[i]); } for(ll i=1;i<=IP;i++){ for(ll j=pref[i].size()-2;j>=0;j--) pref[i][j]+=pref[i][j+1]; } for(ll i=n;i>0;i--){ prob[i]=prob[i-1]; } prob[1]={1}; ld wyn=0; konce[0]=-1; //cout<<"faza 2: "<<flush; for(ll i=0;i<IP;i++){ for(ll j=konce[i]+2;j<=konce[i+1]+1;j++){ ld akwyn=0; for(ll k=max(0LL,(ll)((prob[j].size()-1)/2+K-(pref[i].size()-1)/2));k<prob[j].size() && (pref[i].size()-1)/2+max((ll)-(pref[i].size()-1)/2,(ll)(K-(k-(prob[j].size()-1)/2)))<pref[i].size();k++){ akwyn+=prob[j][k]*pref[i][(pref[i].size()-1)/2+max((ll)-(pref[i].size()-1)/2,(ll)(K-(k-(prob[j].size()-1)/2)))]; } wyn=max(wyn,akwyn); } } cout<<fixed<<wyn; return 0; } |