//~ mt19937 rng(chrono::steady_clock::now().time_since_epoch().count());
//~ while (clock()<=69*CLOCKS_PER_SEC)
//~ #pragma comment(linker, "/stack:200000000")
#pragma GCC optimize("O3")
//~ #pragma GCC target ("avx2")
//~ #pragma GCC optimize("Ofast")
//~ #pragma GCC target("sse,sse2,sse3,ssse3,sse4,popcnt,abm,mmx,avx,tune=native")
//~ #pragma GCC optimize("unroll-loops")
#include <bits/stdc++.h>
#include <ext/pb_ds/assoc_container.hpp>
#include <ext/pb_ds/tree_policy.hpp>
using namespace __gnu_pbds;
using namespace std;
template <typename T>
using ordered_set =
tree<T, null_type, less<T>, rb_tree_tag, tree_order_statistics_node_update>;
#define sim template < class c
#define ris return * this
#define dor > debug & operator <<
#define eni(x) sim > typename \
enable_if<sizeof dud<c>(0) x 1, debug&>::type operator<<(c i) {
sim > struct rge { c b, e; };
sim > rge<c> range(c i, c j) { return rge<c>{i, j}; }
sim > auto dud(c* x) -> decltype(cerr << *x, 0);
sim > char dud(...);
struct debug {
#ifdef LOCAL
~debug() { cerr << endl; }
eni(!=) cerr << boolalpha << i; ris; }
eni(==) ris << range(begin(i), end(i)); }
sim, class b dor(pair < b, c > d) {
ris << "(" << d.first << ", " << d.second << ")";
}
sim dor(rge<c> d) {
*this << "[";
for (auto it = d.b; it != d.e; ++it)
*this << ", " + 2 * (it == d.b) << *it;
ris << "]";
}
#else
sim dor(const c&) { ris; }
#endif
};
#define imie(...) " [" << #__VA_ARGS__ ": " << (__VA_ARGS__) << "] "
#define shandom_ruffle random_shuffle
using ll=long long;
using pii=pair<int,int>;
using pll=pair<ll,ll>;
using vi=vector<int>;
using vll=vector<ll>;
const int nax=1000*1007;
using ld=long double;
/* Prec. error max_ans/1e15 (2.5e18) for (long) doubles, so int rounding works
for doubles with answers 0.5e15, e.g. for sizes 2^20 and RANDOM ints in [0,45k],
assuming DBL_MANT_DIG=53 and LDBL_MANT_DIG=64. Consider normalizing and brute.*/
#define REP(i,n) for(int i = 0; i < int(n); ++i)
struct C { ld re, im;
C operator * (const C & he) const {
return C{re * he.re - im * he.im,
re * he.im + im * he.re};
}
void operator += (const C & he) { re += he.re; im += he.im; }
};
void dft(vector<C> & a, bool rev) {
const int n = a.size();
for(int i = 1, k = 0; i < n; ++i) {
for(int bit = n / 2; (k ^= bit) < bit; bit /= 2);;;
if(i < k) swap(a[i], a[k]);
}
for(int len = 1, who = 0; len < n; len *= 2, ++who) {
static vector<C> t[30];
vector<C> & om = t[who];
if(om.empty()) {
om.resize(len);
const ld ang = 2 * acosl(0) / len;
REP(i, len) om[i] = i%2 || !who ?
C{cos(i*ang), sin(i*ang)} : t[who-1][i/2];
}
for(int i = 0; i < n; i += 2 * len)
REP(k, len) {
const C x = a[i+k], y = a[i+k+len]
* C{om[k].re, om[k].im * (rev ? -1 : 1)};
a[i+k] += y;
a[i+k+len] = C{x.re - y.re, x.im - y.im};
}
}
if(rev) REP(i, n) a[i].re /= n;
}
template<typename T>vector<T> multiply(const vector<T> & a, const vector<T> & b) {
if(a.empty() || b.empty()) return {};
T big = 0;
int n = a.size() + b.size();
vector<T> ans(n - 1);
/* if(min(a.size(),b.size()) < 190) { // BRUTE FORCE
REP(i, a.size()) REP(j, b.size()) ans[i+j] += a[i]*b[j];
return ans; } */
while(n&(n-1)) ++n;
auto foo = [&](const vector<C> & w, int i, int k) {
int j = i ? n - i : 0, r = k ? -1 : 1;
return C{w[i].re + w[j].re * r, w[i].im
- w[j].im * r} * (k ? C{0, -0.5} : C{0.5, 0});
};
vector<C> in(n), done(n);
REP(i, a.size()) in[i].re = a[i] - big;
REP(i, b.size()) in[i].im = b[i] - big;
dft(in, false);
REP(i, n) done[i] = foo(in, i, 0) * foo(in, i, 1);
dft(done, true);
REP(i, ans.size()) ans[i] = is_integral<T>::value ?
llround(done[i].re) : done[i].re;
return ans;
}
int n, k;
ld tab[nax];
ld pref[nax];
ld czyt()
{
double x;
scanf("%lf", &x);
return x;
}
int decyzja(int a, int b, int v)//-1 to przegrana, 1 to wygrana, 0 nie wiadomo
{
int p=v-(a-v);
int dolne=((p-(b-a))>=k);
int gorne=((p+(b-a))>=k);
if (gorne==0)
return -1;
if (dolne==1)
return 1;
return 0;
}
vector<ld> drz[nax];//przedzial bazowy [a, b] trzyma iloczyn dla [a+1, b+1]
void prepro(int v, int a, int b)
{
if (a==b)
{
drz[v]={1-tab[a+1], tab[a+1]};
return;
}
int s=(a+b+2)>>1;
prepro(v*2, a, s-1);
prepro(v*2+1, s, b);
int r1=drz[v*2].size();
int r2=drz[v*2+1].size();
int r=r1+r2-1;
drz[v]=multiply(drz[v*2], drz[v*2+1]);
drz[v].resize(r);
}
void rek(int v, int a, int b, vector<ld> w, int dol, int gor)
{
assert((int)w.size()-1==gor-dol);
{
int d=dol;
int g=gor;
while(d!=g && decyzja(a, b, d+1)==-1)
d++;
while(d!=g && decyzja(a, b, g-1)==1)
g--;
vector<ld> now(g-d+1);
for (int i=dol; i<=gor; i++)
now[min(max(i, d), g)-d]+=w[i-dol];
w=now;
dol=d;
gor=g;
}
assert((int)w.size()-1==gor-dol);
if (a==b)
{
for (int i=dol; i<=gor; i++)
if (i-(a-i)>=k)
pref[a]+=w[i-dol];
return;
}
int s=(a+b+2)>>1;
rek(v*2, a, s-1, w, dol, gor);
vector<ld> now=multiply(w, drz[v*2]);
int roz=drz[v*2].size();
now.resize(gor-dol+roz);
rek(v*2+1, s, b, now, dol, gor+roz-1);
}
int main()
{
scanf("%d%d", &n, &k);
for (int i=1; i<=n; i++)
tab[i]=czyt();
sort(tab+1, tab+1+n);
reverse(tab+1, tab+1+n);
prepro(1, 0, n);
rek(1, 0, n, {1}, 0, 0);
ld wyn=0;
for (int i=1; i<=n; i++)
wyn=max(wyn, pref[i]);
printf("%.15lf\n", (double)wyn);
return 0;
}
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 | //~ mt19937 rng(chrono::steady_clock::now().time_since_epoch().count()); //~ while (clock()<=69*CLOCKS_PER_SEC) //~ #pragma comment(linker, "/stack:200000000") #pragma GCC optimize("O3") //~ #pragma GCC target ("avx2") //~ #pragma GCC optimize("Ofast") //~ #pragma GCC target("sse,sse2,sse3,ssse3,sse4,popcnt,abm,mmx,avx,tune=native") //~ #pragma GCC optimize("unroll-loops") #include <bits/stdc++.h> #include <ext/pb_ds/assoc_container.hpp> #include <ext/pb_ds/tree_policy.hpp> using namespace __gnu_pbds; using namespace std; template <typename T> using ordered_set = tree<T, null_type, less<T>, rb_tree_tag, tree_order_statistics_node_update>; #define sim template < class c #define ris return * this #define dor > debug & operator << #define eni(x) sim > typename \ enable_if<sizeof dud<c>(0) x 1, debug&>::type operator<<(c i) { sim > struct rge { c b, e; }; sim > rge<c> range(c i, c j) { return rge<c>{i, j}; } sim > auto dud(c* x) -> decltype(cerr << *x, 0); sim > char dud(...); struct debug { #ifdef LOCAL ~debug() { cerr << endl; } eni(!=) cerr << boolalpha << i; ris; } eni(==) ris << range(begin(i), end(i)); } sim, class b dor(pair < b, c > d) { ris << "(" << d.first << ", " << d.second << ")"; } sim dor(rge<c> d) { *this << "["; for (auto it = d.b; it != d.e; ++it) *this << ", " + 2 * (it == d.b) << *it; ris << "]"; } #else sim dor(const c&) { ris; } #endif }; #define imie(...) " [" << #__VA_ARGS__ ": " << (__VA_ARGS__) << "] " #define shandom_ruffle random_shuffle using ll=long long; using pii=pair<int,int>; using pll=pair<ll,ll>; using vi=vector<int>; using vll=vector<ll>; const int nax=1000*1007; using ld=long double; /* Prec. error max_ans/1e15 (2.5e18) for (long) doubles, so int rounding works for doubles with answers 0.5e15, e.g. for sizes 2^20 and RANDOM ints in [0,45k], assuming DBL_MANT_DIG=53 and LDBL_MANT_DIG=64. Consider normalizing and brute.*/ #define REP(i,n) for(int i = 0; i < int(n); ++i) struct C { ld re, im; C operator * (const C & he) const { return C{re * he.re - im * he.im, re * he.im + im * he.re}; } void operator += (const C & he) { re += he.re; im += he.im; } }; void dft(vector<C> & a, bool rev) { const int n = a.size(); for(int i = 1, k = 0; i < n; ++i) { for(int bit = n / 2; (k ^= bit) < bit; bit /= 2);;; if(i < k) swap(a[i], a[k]); } for(int len = 1, who = 0; len < n; len *= 2, ++who) { static vector<C> t[30]; vector<C> & om = t[who]; if(om.empty()) { om.resize(len); const ld ang = 2 * acosl(0) / len; REP(i, len) om[i] = i%2 || !who ? C{cos(i*ang), sin(i*ang)} : t[who-1][i/2]; } for(int i = 0; i < n; i += 2 * len) REP(k, len) { const C x = a[i+k], y = a[i+k+len] * C{om[k].re, om[k].im * (rev ? -1 : 1)}; a[i+k] += y; a[i+k+len] = C{x.re - y.re, x.im - y.im}; } } if(rev) REP(i, n) a[i].re /= n; } template<typename T>vector<T> multiply(const vector<T> & a, const vector<T> & b) { if(a.empty() || b.empty()) return {}; T big = 0; int n = a.size() + b.size(); vector<T> ans(n - 1); /* if(min(a.size(),b.size()) < 190) { // BRUTE FORCE REP(i, a.size()) REP(j, b.size()) ans[i+j] += a[i]*b[j]; return ans; } */ while(n&(n-1)) ++n; auto foo = [&](const vector<C> & w, int i, int k) { int j = i ? n - i : 0, r = k ? -1 : 1; return C{w[i].re + w[j].re * r, w[i].im - w[j].im * r} * (k ? C{0, -0.5} : C{0.5, 0}); }; vector<C> in(n), done(n); REP(i, a.size()) in[i].re = a[i] - big; REP(i, b.size()) in[i].im = b[i] - big; dft(in, false); REP(i, n) done[i] = foo(in, i, 0) * foo(in, i, 1); dft(done, true); REP(i, ans.size()) ans[i] = is_integral<T>::value ? llround(done[i].re) : done[i].re; return ans; } int n, k; ld tab[nax]; ld pref[nax]; ld czyt() { double x; scanf("%lf", &x); return x; } int decyzja(int a, int b, int v)//-1 to przegrana, 1 to wygrana, 0 nie wiadomo { int p=v-(a-v); int dolne=((p-(b-a))>=k); int gorne=((p+(b-a))>=k); if (gorne==0) return -1; if (dolne==1) return 1; return 0; } vector<ld> drz[nax];//przedzial bazowy [a, b] trzyma iloczyn dla [a+1, b+1] void prepro(int v, int a, int b) { if (a==b) { drz[v]={1-tab[a+1], tab[a+1]}; return; } int s=(a+b+2)>>1; prepro(v*2, a, s-1); prepro(v*2+1, s, b); int r1=drz[v*2].size(); int r2=drz[v*2+1].size(); int r=r1+r2-1; drz[v]=multiply(drz[v*2], drz[v*2+1]); drz[v].resize(r); } void rek(int v, int a, int b, vector<ld> w, int dol, int gor) { assert((int)w.size()-1==gor-dol); { int d=dol; int g=gor; while(d!=g && decyzja(a, b, d+1)==-1) d++; while(d!=g && decyzja(a, b, g-1)==1) g--; vector<ld> now(g-d+1); for (int i=dol; i<=gor; i++) now[min(max(i, d), g)-d]+=w[i-dol]; w=now; dol=d; gor=g; } assert((int)w.size()-1==gor-dol); if (a==b) { for (int i=dol; i<=gor; i++) if (i-(a-i)>=k) pref[a]+=w[i-dol]; return; } int s=(a+b+2)>>1; rek(v*2, a, s-1, w, dol, gor); vector<ld> now=multiply(w, drz[v*2]); int roz=drz[v*2].size(); now.resize(gor-dol+roz); rek(v*2+1, s, b, now, dol, gor+roz-1); } int main() { scanf("%d%d", &n, &k); for (int i=1; i<=n; i++) tab[i]=czyt(); sort(tab+1, tab+1+n); reverse(tab+1, tab+1+n); prepro(1, 0, n); rek(1, 0, n, {1}, 0, 0); ld wyn=0; for (int i=1; i<=n; i++) wyn=max(wyn, pref[i]); printf("%.15lf\n", (double)wyn); return 0; } |
English