import sys class TreeNode: def __init__(self, l, r): self.min = l # Start of the interval self.max = r # End of the interval self.left = None self.right = None self.height = 1 # AVL height self.max_end = r class AVLTree: def __init__(self): self.root = None def get_height(self, node): return node.height if node else 0 def update_node(self, node): if node: node.height = 1 + max(self.get_height(node.left), self.get_height(node.right)) node.max_end = max(node.max, node.left.max_end if node.left else float('-inf'), node.right.max_end if node.right else float('-inf')) def get_balance(self, node): return self.get_height(node.left) - self.get_height(node.right) if node else 0 def rotate_right(self, y): x = y.left T2 = x.right x.right = y y.left = T2 self.update_node(y) self.update_node(x) return x def rotate_left(self, x): y = x.right T2 = y.left y.left = x x.right = T2 self.update_node(x) self.update_node(y) return y def insert(self, node, key, value): if not node: return TreeNode(key, value) if key < node.min: node.left = self.insert(node.left, key, value) else: node.right = self.insert(node.right, key, value) self.update_node(node) balance = self.get_balance(node) if balance > 1 and key < node.left.min: return self.rotate_right(node) if balance < -1 and key >= node.right.min: return self.rotate_left(node) if balance > 1 and key >= node.left.min: node.left = self.rotate_left(node.left) return self.rotate_right(node) if balance < -1 and key < node.right.min: node.right = self.rotate_right(node.right) return self.rotate_left(node) return node def _min_value_node(self, node): current = node while current.left: current = current.left return current def delete(self, node, key): if not node: return node if key < node.min: node.left = self.delete(node.left, key) elif key > node.min: node.right = self.delete(node.right, key) else: if not node.left: return node.right elif not node.right: return node.left temp = self._min_value_node(node.right) node.min, node.max = temp.min, temp.max node.right = self.delete(node.right, temp.min) self.update_node(node) balance = self.get_balance(node) if balance > 1 and self.get_balance(node.left) >= 0: return self.rotate_right(node) if balance > 1 and self.get_balance(node.left) < 0: node.left = self.rotate_left(node.left) return self.rotate_right(node) if balance < -1 and self.get_balance(node.right) <= 0: return self.rotate_left(node) if balance < -1 and self.get_balance(node.right) > 0: node.right = self.rotate_right(node.right) return self.rotate_left(node) return node def find_overlaps(self, node, start, end, overlaps): if not node: return # Adjusted condition: merge if intervals overlap or touch. if node.min <= end + 1 and node.max >= start - 1: overlaps.append(node) if node.left and node.left.max_end >= start - 1: self.find_overlaps(node.left, start, end, overlaps) if node.right and node.right.min <= end + 1: self.find_overlaps(node.right, start, end, overlaps) class SortedTupleTree: def __init__(self): self.tree = AVLTree() def insert(self, new_tuple): k, l = new_tuple overlaps = [] # Find all nodes that overlap (or touch) the new interval self.tree.find_overlaps(self.tree.root, k, l, overlaps) # Merge all overlapping intervals for node in overlaps: k = min(k, node.min) l = max(l, node.max) self.tree.root = self.tree.delete(self.tree.root, node.min) # Insert the merged interval self.tree.root = self.tree.insert(self.tree.root, k, l) def find_tuple(self, num): node = self.tree.root while node: if node.min <= num <= node.max: return (node.min, node.max) elif num < node.min: node = node.left else: node = node.right return None def get_list(self): result = [] self._inorder(self.tree.root, result) return result def _inorder(self, node, result): if node: self._inorder(node.left, result) result.append((node.min, node.max)) self._inorder(node.right, result) def read_input(): n, m, s = map(int, sys.stdin.readline().strip().split()) data = [line.rsplit(' ', 1) for line in sys.stdin.readlines()] data = [(int(k), int(l)) for k, l in data] return n, m, s, data n, m, s, datas = read_input() sorted_tree = SortedTupleTree() for data in datas: sorted_tree.insert(data) #print(sorted_tree.get_list()) a, b = sorted_tree.find_tuple(s) #print(a,b) if a == 1: sys.stdout.write(str(b+1)) elif b == n: sys.stdout.write(str(a - 1)) else: if abs(s - a) <= abs(s-b): sys.stdout.write(str(a-1)) else: sys.stdout.write(str(b+1))
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 | import sys class TreeNode: def __init__(self, l, r): self.min = l # Start of the interval self.max = r # End of the interval self.left = None self.right = None self.height = 1 # AVL height self.max_end = r class AVLTree: def __init__(self): self.root = None def get_height(self, node): return node.height if node else 0 def update_node(self, node): if node: node.height = 1 + max(self.get_height(node.left), self.get_height(node.right)) node.max_end = max(node.max, node.left.max_end if node.left else float('-inf'), node.right.max_end if node.right else float('-inf')) def get_balance(self, node): return self.get_height(node.left) - self.get_height(node.right) if node else 0 def rotate_right(self, y): x = y.left T2 = x.right x.right = y y.left = T2 self.update_node(y) self.update_node(x) return x def rotate_left(self, x): y = x.right T2 = y.left y.left = x x.right = T2 self.update_node(x) self.update_node(y) return y def insert(self, node, key, value): if not node: return TreeNode(key, value) if key < node.min: node.left = self.insert(node.left, key, value) else: node.right = self.insert(node.right, key, value) self.update_node(node) balance = self.get_balance(node) if balance > 1 and key < node.left.min: return self.rotate_right(node) if balance < -1 and key >= node.right.min: return self.rotate_left(node) if balance > 1 and key >= node.left.min: node.left = self.rotate_left(node.left) return self.rotate_right(node) if balance < -1 and key < node.right.min: node.right = self.rotate_right(node.right) return self.rotate_left(node) return node def _min_value_node(self, node): current = node while current.left: current = current.left return current def delete(self, node, key): if not node: return node if key < node.min: node.left = self.delete(node.left, key) elif key > node.min: node.right = self.delete(node.right, key) else: if not node.left: return node.right elif not node.right: return node.left temp = self._min_value_node(node.right) node.min, node.max = temp.min, temp.max node.right = self.delete(node.right, temp.min) self.update_node(node) balance = self.get_balance(node) if balance > 1 and self.get_balance(node.left) >= 0: return self.rotate_right(node) if balance > 1 and self.get_balance(node.left) < 0: node.left = self.rotate_left(node.left) return self.rotate_right(node) if balance < -1 and self.get_balance(node.right) <= 0: return self.rotate_left(node) if balance < -1 and self.get_balance(node.right) > 0: node.right = self.rotate_right(node.right) return self.rotate_left(node) return node def find_overlaps(self, node, start, end, overlaps): if not node: return # Adjusted condition: merge if intervals overlap or touch. if node.min <= end + 1 and node.max >= start - 1: overlaps.append(node) if node.left and node.left.max_end >= start - 1: self.find_overlaps(node.left, start, end, overlaps) if node.right and node.right.min <= end + 1: self.find_overlaps(node.right, start, end, overlaps) class SortedTupleTree: def __init__(self): self.tree = AVLTree() def insert(self, new_tuple): k, l = new_tuple overlaps = [] # Find all nodes that overlap (or touch) the new interval self.tree.find_overlaps(self.tree.root, k, l, overlaps) # Merge all overlapping intervals for node in overlaps: k = min(k, node.min) l = max(l, node.max) self.tree.root = self.tree.delete(self.tree.root, node.min) # Insert the merged interval self.tree.root = self.tree.insert(self.tree.root, k, l) def find_tuple(self, num): node = self.tree.root while node: if node.min <= num <= node.max: return (node.min, node.max) elif num < node.min: node = node.left else: node = node.right return None def get_list(self): result = [] self._inorder(self.tree.root, result) return result def _inorder(self, node, result): if node: self._inorder(node.left, result) result.append((node.min, node.max)) self._inorder(node.right, result) def read_input(): n, m, s = map(int, sys.stdin.readline().strip().split()) data = [line.rsplit(' ', 1) for line in sys.stdin.readlines()] data = [(int(k), int(l)) for k, l in data] return n, m, s, data n, m, s, datas = read_input() sorted_tree = SortedTupleTree() for data in datas: sorted_tree.insert(data) #print(sorted_tree.get_list()) a, b = sorted_tree.find_tuple(s) #print(a,b) if a == 1: sys.stdout.write(str(b+1)) elif b == n: sys.stdout.write(str(a - 1)) else: if abs(s - a) <= abs(s-b): sys.stdout.write(str(a-1)) else: sys.stdout.write(str(b+1)) |