#include <bits/stdc++.h> using namespace std; #define double long double typedef complex<double> cd; const double PI = acos(-1); const int C = 65536; vector<double> tree[2 * C + 10]; vector<double> prob; int n, t; /* FFT i ternary search skopiowane z internetow */ void fft(vector<cd> & a, bool invert) { int n = a.size(); for (int i = 1, j = 0; i < n; i++) { int bit = n >> 1; for (; j & bit; bit >>= 1) j ^= bit; j ^= bit; if (i < j) swap(a[i], a[j]); } int cnt = 1; for (int len = 2; len <= n; len <<= 1) { double ang = 2 * PI / len * (invert ? -1 : 1); cd wlen(cos(ang), sin(ang)); for (int i = 0; i < n; i += len) { cd w(1); for (int j = 0; j < len/2; j++) { cd u = a[i+j]; cd v = a[i+j+len/2] * w; a[i+j] = u + v; a[i+j+len/2] = u - v; w *= wlen; } } cnt++; } if (invert) { for (cd & x : a) x /= n; } } vector<double> multiplyPoly(const vector<double>& A, const vector<double>& B) { vector<cd> fa(A.begin(), A.end()), fb(B.begin(), B.end()); int n = 1; while(n < (int)(A.size() + B.size() - 1)) n <<= 1; fa.resize(n); fb.resize(n); fft(fa, false); fft(fb, false); for (int i = 0; i < n; i++) { fa[i] *= fb[i]; } fft(fa, true); vector<double> res(n); for (int i = 0; i < n; i++) { res[i] = fa[i].real(); } res.resize(A.size() + B.size() - 1); return res; } vector<double> getPoly(int x) { x += C; vector<double> poly = tree[x]; while(x) { if(x % 2 && x > 1) poly = multiplyPoly(poly, tree[x - 1]); x /= 2; } return poly; } double calc(int pos, int k) { int n = pos + 1; int L = ceil((k + n) / 2.0); vector<double> product = getPoly(pos); double res = 0; for (int h = L; h < product.size() && h <= n; h++) { res += product[h]; } return res; } const double EPS = 1e-20; bool equal(double x, double y) { return fabsl(y - x) < EPS; } double ternary_search(const vector<int>& vec, const vector<int>& vec2) { int left = 0; int right = vec.size() - 1; double res = 0; while (right - left >= 3) { int mid1 = left + (right - left) / 3; int mid2 = right - (right - left) / 3; double res_mid1 = calc(vec[mid1], t); double res_mid2 = calc(vec[mid2], t); if (res_mid1 < res_mid2 || equal(res_mid1, res_mid2)) { res = max(res, res_mid2); left = mid1; } else { res = max(res, res_mid1); right = mid2; } } for (int i = left; i <= right; ++i) { double res_mid1 = calc(vec[i], t); if(res_mid1 > res) res = res_mid1; if(i < vec2.size()) { res_mid1 = calc(vec2[i], t); if(res_mid1 > res) res = res_mid1; } } return res; } void precalc() { for (int i = 0; i < n; i++) tree[C + i] = {1.0 - prob[i], prob[i]}; for(int i = n; i <= C; i++) tree[C + i] = {1, 0}; for(int i = C - 1; i > 0; i--) tree[i] = multiplyPoly(tree[2 * i], tree[2 * i + 1]); } int main(){ cin>>n>>t; for(int i = 1; i <= n; i++) { double x; cin>>x; prob.push_back(-x); } sort(prob.begin(), prob.end()); for(int i = 0; i < prob.size(); i++) prob[i] = -prob[i]; precalc(); vector<int> argsEven, argsOdd; for(int i = 0; i < n; i++) if(i % 2) argsOdd.push_back(i); else argsEven.push_back(i); double res = ternary_search(argsEven, argsOdd); printf("%0.9Lf\n", res); return 0; }
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 | #include <bits/stdc++.h> using namespace std; #define double long double typedef complex<double> cd; const double PI = acos(-1); const int C = 65536; vector<double> tree[2 * C + 10]; vector<double> prob; int n, t; /* FFT i ternary search skopiowane z internetow */ void fft(vector<cd> & a, bool invert) { int n = a.size(); for (int i = 1, j = 0; i < n; i++) { int bit = n >> 1; for (; j & bit; bit >>= 1) j ^= bit; j ^= bit; if (i < j) swap(a[i], a[j]); } int cnt = 1; for (int len = 2; len <= n; len <<= 1) { double ang = 2 * PI / len * (invert ? -1 : 1); cd wlen(cos(ang), sin(ang)); for (int i = 0; i < n; i += len) { cd w(1); for (int j = 0; j < len/2; j++) { cd u = a[i+j]; cd v = a[i+j+len/2] * w; a[i+j] = u + v; a[i+j+len/2] = u - v; w *= wlen; } } cnt++; } if (invert) { for (cd & x : a) x /= n; } } vector<double> multiplyPoly(const vector<double>& A, const vector<double>& B) { vector<cd> fa(A.begin(), A.end()), fb(B.begin(), B.end()); int n = 1; while(n < (int)(A.size() + B.size() - 1)) n <<= 1; fa.resize(n); fb.resize(n); fft(fa, false); fft(fb, false); for (int i = 0; i < n; i++) { fa[i] *= fb[i]; } fft(fa, true); vector<double> res(n); for (int i = 0; i < n; i++) { res[i] = fa[i].real(); } res.resize(A.size() + B.size() - 1); return res; } vector<double> getPoly(int x) { x += C; vector<double> poly = tree[x]; while(x) { if(x % 2 && x > 1) poly = multiplyPoly(poly, tree[x - 1]); x /= 2; } return poly; } double calc(int pos, int k) { int n = pos + 1; int L = ceil((k + n) / 2.0); vector<double> product = getPoly(pos); double res = 0; for (int h = L; h < product.size() && h <= n; h++) { res += product[h]; } return res; } const double EPS = 1e-20; bool equal(double x, double y) { return fabsl(y - x) < EPS; } double ternary_search(const vector<int>& vec, const vector<int>& vec2) { int left = 0; int right = vec.size() - 1; double res = 0; while (right - left >= 3) { int mid1 = left + (right - left) / 3; int mid2 = right - (right - left) / 3; double res_mid1 = calc(vec[mid1], t); double res_mid2 = calc(vec[mid2], t); if (res_mid1 < res_mid2 || equal(res_mid1, res_mid2)) { res = max(res, res_mid2); left = mid1; } else { res = max(res, res_mid1); right = mid2; } } for (int i = left; i <= right; ++i) { double res_mid1 = calc(vec[i], t); if(res_mid1 > res) res = res_mid1; if(i < vec2.size()) { res_mid1 = calc(vec2[i], t); if(res_mid1 > res) res = res_mid1; } } return res; } void precalc() { for (int i = 0; i < n; i++) tree[C + i] = {1.0 - prob[i], prob[i]}; for(int i = n; i <= C; i++) tree[C + i] = {1, 0}; for(int i = C - 1; i > 0; i--) tree[i] = multiplyPoly(tree[2 * i], tree[2 * i + 1]); } int main(){ cin>>n>>t; for(int i = 1; i <= n; i++) { double x; cin>>x; prob.push_back(-x); } sort(prob.begin(), prob.end()); for(int i = 0; i < prob.size(); i++) prob[i] = -prob[i]; precalc(); vector<int> argsEven, argsOdd; for(int i = 0; i < n; i++) if(i % 2) argsOdd.push_back(i); else argsEven.push_back(i); double res = ternary_search(argsEven, argsOdd); printf("%0.9Lf\n", res); return 0; } |