// clang-format off
#include<bits/stdc++.h>
using namespace std;
using LL=long long;
#define FOR(i,l,r) for(auto i=(l);i<=(r);++i)
#define REP(i,n) FOR(i,0,(n)-1)
#define ssize(x) int(x.size())
template<class A,class B>auto&operator<<(ostream&o,pair<A,B>p){return o<<"("<<p.first<<", "<<p.second<<")";}
template<class T>auto operator<<(ostream&o,T x)->decltype(x.end(),o){o<<"{";int i=0;for(auto e:x)o<<(", ")+2*!i++<<e;return o<<"}";}
#ifdef DEBUG
#define debug(X...)cerr<<"["#X"]: ",[](auto...$){((cerr<<$<<"; "),...)<<"\n";}(X)
#else
#define debug(...) {}
#endif
// clang-format on
using r_t = double;
const int avg_window = 2;
const int query_base = 2048;
const int search_window = query_base * 2;
const int out_precision = 7;
const int min_fft_exp = 11;
const int max_fft_exp = 17;
const int ncache_exps = max_fft_exp - 1;
const int ops_thres = 700 * 700;
struct FFT
{
int n;
vector<int> perm;
using cd = complex<double>;
FFT(int n);
void fft(vector<cd>& a, bool invert) const;
};
FFT ffts[max_fft_exp + 1] = {
FFT(1 << 0),
FFT(1 << 1),
FFT(1 << 2),
FFT(1 << 3),
FFT(1 << 4),
FFT(1 << 5),
FFT(1 << 6),
FFT(1 << 7),
FFT(1 << 8),
FFT(1 << 9),
FFT(1 << 10),
FFT(1 << 11),
FFT(1 << 12),
FFT(1 << 13),
FFT(1 << 14),
FFT(1 << 15),
FFT(1 << 16),
FFT(1 << 17),
};
int N, thres;
vector<array<pair<bool, vector<r_t>>, ncache_exps>> PMF_cache;
vector<r_t> buffer;
// PMF calculation
void brute_conv(const vector<r_t>& A, const vector<r_t>& B, vector<r_t>& out);
void get_conv(const vector<r_t>& A, const vector<r_t>& B, vector<r_t>& out);
const vector<r_t>& get_PMF_cache(int k, int exp);
vector<r_t> starter_PMF(int k);
void advance_PMF(int k, const vector<r_t>& PMF, vector<r_t>& out);
// Getting score
int thres_to_succ(int k);
r_t PMF_to_score(const vector<r_t>& PMF, int k);
r_t get_func(int k);
int get_search_start(int L, int R);
int
main()
{
cin.tie(0)->sync_with_stdio(0);
cerr << fixed << setprecision(30);
cout << fixed << setprecision(out_precision);
cin >> N >> thres;
{
vector<r_t> ps(N);
for (auto& p : ps) cin >> p;
sort(ps.begin(), ps.end(), greater<r_t>());
// Create PMF cache
PMF_cache.resize(N);
REP (i, N) PMF_cache[i][0] = {true, {1 - ps[i], ps[i]}};
}
// Range in which we will search for a good starting point
int L = thres - thres % query_base, R = N - avg_window + 1;
int search_start = get_search_start(L, R);
debug(L, R, search_start);
// Search brutally through the search window
auto PMF = starter_PMF(search_start);
auto best_score = max<r_t>(0, PMF_to_score(PMF, search_start));
L = search_start + 1, R = min(N, search_start + search_window - 1);
FOR (k, L, R) {
advance_PMF(k, PMF, buffer);
swap(PMF, buffer);
auto score = PMF_to_score(PMF, k);
best_score = max(best_score, score);
}
cout << best_score << "\n";
return 0;
}
int
get_search_start(int L, int R)
{
r_t max_val = 0;
int max_pos = 0;
for (int k = L; k <= R; k += query_base) {
auto val = get_func(k);
if (val > max_val) max_val = val, max_pos = k;
}
return max(L, max_pos - query_base);
}
int
thres_to_succ(int k)
{
return (thres + k + 1) / 2;
}
r_t
PMF_to_score(const vector<r_t>& PMF, int k)
{
k = thres_to_succ(k);
r_t res = 0;
FOR (i, k, ssize(PMF) - 1) res += PMF[i];
return res;
}
r_t
get_func(int k)
{
auto PMF = starter_PMF(k);
advance_PMF(k + 1, PMF, buffer);
auto res = PMF_to_score(PMF, k) + PMF_to_score(buffer, k + 1);
return res;
}
vector<r_t>
starter_PMF(int k)
{
vector<r_t> out = {1};
int i = 0, exp = ncache_exps - 1, span = 1 << exp;
while (k) {
while (span > k) --exp, span >>= 1;
get_conv(get_PMF_cache(i, exp), out, buffer);
swap(buffer, out);
i += span, k -= span;
}
return out;
}
void
advance_PMF(int k, const vector<r_t>& PMF, vector<r_t>& out)
{
const auto& p = PMF_cache[k - 1][0].second;
out.resize(ssize(PMF) + 1);
out[0] = PMF[0] * p[0], out.back() = PMF.back() * p[1];
FOR (i, 1, ssize(PMF) - 1) out[i] = PMF[i - 1] * p[1] + PMF[i] * p[0];
}
const vector<r_t>&
get_PMF_cache(int k, int exp)
{
auto& entry = PMF_cache[k][exp];
if (!entry.first) {
entry.first = true;
get_conv(get_PMF_cache(k, exp - 1),
get_PMF_cache(k + (1 << (exp - 1)), exp - 1),
entry.second);
}
return entry.second;
}
void
brute_conv(const vector<r_t>& A, const vector<r_t>& B, vector<r_t>& out)
{
out.assign(ssize(A) + ssize(B) - 1, 0);
REP (b, ssize(B))
REP (a, ssize(A)) out[a + b] += A[a] * B[b];
}
void
get_conv(const vector<r_t>& A, const vector<r_t>& B, vector<r_t>& out)
{
// Maybe brut is fast enough
if (ssize(A) * ssize(B) < ops_thres) {
brute_conv(A, B, out);
return;
}
// Select appropriate FFT for the task
int final_size = ssize(A) + ssize(B) - 1, exp = 0, buf_size = 1;
while (buf_size < final_size) ++exp, buf_size <<= 1;
if (exp < min_fft_exp) {
brute_conv(A, B, out);
return;
}
const auto& fft = ffts[exp];
// Calculate DFT for A
vector<FFT::cd> Ai(buf_size);
REP (i, ssize(A)) Ai[fft.perm[i]] = A[i];
fft.fft(Ai, false);
// Calculate DFT for B
vector<FFT::cd> Bi(buf_size);
REP (i, ssize(B)) Bi[fft.perm[i]] = B[i];
fft.fft(Bi, false);
// Get convolution
REP (i, buf_size) Bi[i] *= Ai[i];
REP (i, buf_size) Ai[fft.perm[i]] = Bi[i];
fft.fft(Ai, true);
// Prepare output
out.resize(final_size);
REP (i, final_size) out[i] = max<r_t>(0, Ai[i].real());
}
FFT::FFT(int n)
: n(n)
, perm(n)
{
iota(perm.begin(), perm.end(), 0);
for (int i = 1, j = 0; i < n; i++) {
int bit = n >> 1;
for (; j & bit; bit >>= 1) j ^= bit;
j ^= bit;
if (i < j) swap(perm[i], perm[j]);
}
};
void
FFT::fft(vector<cd>& a, bool invert) const
{
for (int len = 2; len <= n; len <<= 1) {
double ang = 2 * std::numbers::pi / len * (invert ? -1 : 1);
cd wlen(cos(ang), sin(ang));
for (int i = 0; i < n; i += len) {
cd w(1);
for (int j = 0; j < len / 2; j++) {
cd u = a[i + j], v = a[i + j + len / 2] * w;
a[i + j] = u + v;
a[i + j + len / 2] = u - v;
w *= wlen;
}
}
}
if (invert) {
for (cd& x : a) x /= n;
}
}
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 | // clang-format off #include<bits/stdc++.h> using namespace std; using LL=long long; #define FOR(i,l,r) for(auto i=(l);i<=(r);++i) #define REP(i,n) FOR(i,0,(n)-1) #define ssize(x) int(x.size()) template<class A,class B>auto&operator<<(ostream&o,pair<A,B>p){return o<<"("<<p.first<<", "<<p.second<<")";} template<class T>auto operator<<(ostream&o,T x)->decltype(x.end(),o){o<<"{";int i=0;for(auto e:x)o<<(", ")+2*!i++<<e;return o<<"}";} #ifdef DEBUG #define debug(X...)cerr<<"["#X"]: ",[](auto...$){((cerr<<$<<"; "),...)<<"\n";}(X) #else #define debug(...) {} #endif // clang-format on using r_t = double; const int avg_window = 2; const int query_base = 2048; const int search_window = query_base * 2; const int out_precision = 7; const int min_fft_exp = 11; const int max_fft_exp = 17; const int ncache_exps = max_fft_exp - 1; const int ops_thres = 700 * 700; struct FFT { int n; vector<int> perm; using cd = complex<double>; FFT(int n); void fft(vector<cd>& a, bool invert) const; }; FFT ffts[max_fft_exp + 1] = { FFT(1 << 0), FFT(1 << 1), FFT(1 << 2), FFT(1 << 3), FFT(1 << 4), FFT(1 << 5), FFT(1 << 6), FFT(1 << 7), FFT(1 << 8), FFT(1 << 9), FFT(1 << 10), FFT(1 << 11), FFT(1 << 12), FFT(1 << 13), FFT(1 << 14), FFT(1 << 15), FFT(1 << 16), FFT(1 << 17), }; int N, thres; vector<array<pair<bool, vector<r_t>>, ncache_exps>> PMF_cache; vector<r_t> buffer; // PMF calculation void brute_conv(const vector<r_t>& A, const vector<r_t>& B, vector<r_t>& out); void get_conv(const vector<r_t>& A, const vector<r_t>& B, vector<r_t>& out); const vector<r_t>& get_PMF_cache(int k, int exp); vector<r_t> starter_PMF(int k); void advance_PMF(int k, const vector<r_t>& PMF, vector<r_t>& out); // Getting score int thres_to_succ(int k); r_t PMF_to_score(const vector<r_t>& PMF, int k); r_t get_func(int k); int get_search_start(int L, int R); int main() { cin.tie(0)->sync_with_stdio(0); cerr << fixed << setprecision(30); cout << fixed << setprecision(out_precision); cin >> N >> thres; { vector<r_t> ps(N); for (auto& p : ps) cin >> p; sort(ps.begin(), ps.end(), greater<r_t>()); // Create PMF cache PMF_cache.resize(N); REP (i, N) PMF_cache[i][0] = {true, {1 - ps[i], ps[i]}}; } // Range in which we will search for a good starting point int L = thres - thres % query_base, R = N - avg_window + 1; int search_start = get_search_start(L, R); debug(L, R, search_start); // Search brutally through the search window auto PMF = starter_PMF(search_start); auto best_score = max<r_t>(0, PMF_to_score(PMF, search_start)); L = search_start + 1, R = min(N, search_start + search_window - 1); FOR (k, L, R) { advance_PMF(k, PMF, buffer); swap(PMF, buffer); auto score = PMF_to_score(PMF, k); best_score = max(best_score, score); } cout << best_score << "\n"; return 0; } int get_search_start(int L, int R) { r_t max_val = 0; int max_pos = 0; for (int k = L; k <= R; k += query_base) { auto val = get_func(k); if (val > max_val) max_val = val, max_pos = k; } return max(L, max_pos - query_base); } int thres_to_succ(int k) { return (thres + k + 1) / 2; } r_t PMF_to_score(const vector<r_t>& PMF, int k) { k = thres_to_succ(k); r_t res = 0; FOR (i, k, ssize(PMF) - 1) res += PMF[i]; return res; } r_t get_func(int k) { auto PMF = starter_PMF(k); advance_PMF(k + 1, PMF, buffer); auto res = PMF_to_score(PMF, k) + PMF_to_score(buffer, k + 1); return res; } vector<r_t> starter_PMF(int k) { vector<r_t> out = {1}; int i = 0, exp = ncache_exps - 1, span = 1 << exp; while (k) { while (span > k) --exp, span >>= 1; get_conv(get_PMF_cache(i, exp), out, buffer); swap(buffer, out); i += span, k -= span; } return out; } void advance_PMF(int k, const vector<r_t>& PMF, vector<r_t>& out) { const auto& p = PMF_cache[k - 1][0].second; out.resize(ssize(PMF) + 1); out[0] = PMF[0] * p[0], out.back() = PMF.back() * p[1]; FOR (i, 1, ssize(PMF) - 1) out[i] = PMF[i - 1] * p[1] + PMF[i] * p[0]; } const vector<r_t>& get_PMF_cache(int k, int exp) { auto& entry = PMF_cache[k][exp]; if (!entry.first) { entry.first = true; get_conv(get_PMF_cache(k, exp - 1), get_PMF_cache(k + (1 << (exp - 1)), exp - 1), entry.second); } return entry.second; } void brute_conv(const vector<r_t>& A, const vector<r_t>& B, vector<r_t>& out) { out.assign(ssize(A) + ssize(B) - 1, 0); REP (b, ssize(B)) REP (a, ssize(A)) out[a + b] += A[a] * B[b]; } void get_conv(const vector<r_t>& A, const vector<r_t>& B, vector<r_t>& out) { // Maybe brut is fast enough if (ssize(A) * ssize(B) < ops_thres) { brute_conv(A, B, out); return; } // Select appropriate FFT for the task int final_size = ssize(A) + ssize(B) - 1, exp = 0, buf_size = 1; while (buf_size < final_size) ++exp, buf_size <<= 1; if (exp < min_fft_exp) { brute_conv(A, B, out); return; } const auto& fft = ffts[exp]; // Calculate DFT for A vector<FFT::cd> Ai(buf_size); REP (i, ssize(A)) Ai[fft.perm[i]] = A[i]; fft.fft(Ai, false); // Calculate DFT for B vector<FFT::cd> Bi(buf_size); REP (i, ssize(B)) Bi[fft.perm[i]] = B[i]; fft.fft(Bi, false); // Get convolution REP (i, buf_size) Bi[i] *= Ai[i]; REP (i, buf_size) Ai[fft.perm[i]] = Bi[i]; fft.fft(Ai, true); // Prepare output out.resize(final_size); REP (i, final_size) out[i] = max<r_t>(0, Ai[i].real()); } FFT::FFT(int n) : n(n) , perm(n) { iota(perm.begin(), perm.end(), 0); for (int i = 1, j = 0; i < n; i++) { int bit = n >> 1; for (; j & bit; bit >>= 1) j ^= bit; j ^= bit; if (i < j) swap(perm[i], perm[j]); } }; void FFT::fft(vector<cd>& a, bool invert) const { for (int len = 2; len <= n; len <<= 1) { double ang = 2 * std::numbers::pi / len * (invert ? -1 : 1); cd wlen(cos(ang), sin(ang)); for (int i = 0; i < n; i += len) { cd w(1); for (int j = 0; j < len / 2; j++) { cd u = a[i + j], v = a[i + j + len / 2] * w; a[i + j] = u + v; a[i + j + len / 2] = u - v; w *= wlen; } } } if (invert) { for (cd& x : a) x /= n; } } |
English