#include <bits/stdc++.h> using namespace std; #define fwd(i, a, n) for (int i = (a); i < (n); i++) #define rep(i, n) fwd(i, 0, n) #define all(X) X.begin(), X.end() #define sz(X) int(size(X)) #define pb push_back #define eb emplace_back #define st first #define nd second using pii = pair<int, int>; using vi = vector<int>; using ll = long long; using ld = long double; #ifdef LOC auto SS = signal(6, [](int) { *(int *)0 = 0; }); # define DTP(x, y) \ auto operator<<(auto &o, auto a)->decltype(y, o) { \ o << "("; \ x; \ return o << ")"; \ } DTP(o << a.st << ", " << a.nd, a.nd); DTP(for (auto i : a) o << i << ", ", all(a)); void dump(auto... x) { ((cerr << x << ", "), ...) << '\n'; } # define deb(x...) cerr << setw(4) << __LINE__ << ":[" #x "]: ", dump(x) #else # define deb(...) 0 #endif // Z liba: // https://github.com/KacperTopolski/kactl/blob/main/content/numerical/FastFourierTransform.h typedef complex<ld> C; typedef vector<ld> vd; void fft(vector<C> &a) { int n = sz(a), L = 31 - __builtin_clz(n); static vector<complex<long double> > R(2, 1); static vector<C> rt(2, 1); // (^ 10% faster if double) for (static int k = 2; k < n; k *= 2) { R.resize(n); rt.resize(n); auto x = polar(1.0L, acos(-1.0L) / k); fwd(i, k, 2 * k) rt[i] = R[i] = i & 1 ? R[i / 2] * x : R[i / 2]; } vi rev(n); rep(i, n) rev[i] = (rev[i / 2] | (i & 1) << L) / 2; rep(i, n) if (i < rev[i]) swap(a[i], a[rev[i]]); for (int k = 1; k < n; k *= 2) for (int i = 0; i < n; i += 2 * k) rep(j, k) { // C z = rt[j+k] * a[i+j+k]; // (25% faster if hand-rolled) /// // include-line auto x = (ld *)&rt[j + k], y = (ld *)&a[i + j + k]; /// exclude-line C z(x[0] * y[0] - x[1] * y[1], x[0] * y[1] + x[1] * y[0]); /// exclude-line a[i + j + k] = a[i + j] - z; a[i + j] += z; } } vd conv(const vd &a, const vd &b) { if (a.empty() || b.empty()) return {}; vd res(sz(a) + sz(b) - 1); int L = 32 - __builtin_clz(sz(res)), n = 1 << L; vector<C> in(n), out(n); copy(all(a), begin(in)); rep(i, sz(b)) in[i].imag(b[i]); fft(in); for (C &x : in) x *= x; rep(i, n) out[i] = in[-i & (n - 1)] - conj(in[i]); fft(out); rep(i, sz(res)) res[i] = imag(out[i]) / (4 * n); return res; } constexpr int block_size = 1500; void sol() { int n, t; cin >> n >> t; vd p(n); rep(i, n) cin >> p[i]; sort(all(p), greater<ld>()); int start = t % 2; while ((n - start) % (2 * block_size) != 0) { n += 1; p.pb(0); } ld max_prob = 0, tot_prob = 0; vd dp; if (start == 1) { dp = {1 - p[0], p[0]}; if (t == 1) max_prob = tot_prob = dp[1]; } else { dp = {1}; } vd naive_dp(2 * block_size + 1); for (int block_l = start; block_l < n; block_l += 2 * block_size) { fill(all(naive_dp), 0); naive_dp[0] = 1; ld new_tot_prob = tot_prob; for (int i = 0; i < 2 * block_size; i += 2) { ld prob_first = p[block_l + i], prob_second = p[block_l + i + 1]; ld prob_c_first = 1 - prob_first, prob_c_second = 1 - prob_second; ld prob_none = prob_c_first * prob_c_second; ld prob_one = prob_first * prob_c_second + prob_c_first * prob_second; ld prob_two = prob_first * prob_second; for (int j = i + 2; j >= 2; j--) naive_dp[j] = naive_dp[j] * prob_none + naive_dp[j - 1] * prob_one + naive_dp[j - 2] * prob_two; naive_dp[1] = naive_dp[1] * prob_none + naive_dp[0] * prob_one; naive_dp[0] *= prob_none; int dp_threshold = (t + block_l) / 2; int threshold_delta = i / 2 + 1; new_tot_prob = tot_prob; int a = dp_threshold - threshold_delta; int b = dp_threshold; ld jump_sum = 0; rep(j, threshold_delta) { jump_sum += naive_dp[2 * threshold_delta - j]; if (a + j >= 0 && a + j < sz(dp)) new_tot_prob += dp[a + j] * jump_sum; } rep(j, threshold_delta) { jump_sum += naive_dp[threshold_delta - j]; if (b + j >= 0 && b + j < sz(dp)) new_tot_prob += dp[b + j] * (jump_sum - 1); } max_prob = max(max_prob, new_tot_prob); } dp = conv(dp, naive_dp); tot_prob = new_tot_prob; } cout << max_prob << '\n'; } int32_t main() { cin.tie(0)->sync_with_stdio(0); cout << fixed << setprecision(15); sol(); #ifdef LOCF cout.flush(); cerr << "- - - - - - - - -\n"; (void)!system( "grep VmPeak /proc/$PPID/status | sed s/....kB/\' MB\'/1 >&2"); // 4x.kB // ....kB #endif }
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 | #include <bits/stdc++.h> using namespace std; #define fwd(i, a, n) for (int i = (a); i < (n); i++) #define rep(i, n) fwd(i, 0, n) #define all(X) X.begin(), X.end() #define sz(X) int(size(X)) #define pb push_back #define eb emplace_back #define st first #define nd second using pii = pair<int, int>; using vi = vector<int>; using ll = long long; using ld = long double; #ifdef LOC auto SS = signal(6, [](int) { *(int *)0 = 0; }); # define DTP(x, y) \ auto operator<<(auto &o, auto a)->decltype(y, o) { \ o << "("; \ x; \ return o << ")"; \ } DTP(o << a.st << ", " << a.nd, a.nd); DTP(for (auto i : a) o << i << ", ", all(a)); void dump(auto... x) { ((cerr << x << ", "), ...) << '\n'; } # define deb(x...) cerr << setw(4) << __LINE__ << ":[" #x "]: ", dump(x) #else # define deb(...) 0 #endif // Z liba: // https://github.com/KacperTopolski/kactl/blob/main/content/numerical/FastFourierTransform.h typedef complex<ld> C; typedef vector<ld> vd; void fft(vector<C> &a) { int n = sz(a), L = 31 - __builtin_clz(n); static vector<complex<long double> > R(2, 1); static vector<C> rt(2, 1); // (^ 10% faster if double) for (static int k = 2; k < n; k *= 2) { R.resize(n); rt.resize(n); auto x = polar(1.0L, acos(-1.0L) / k); fwd(i, k, 2 * k) rt[i] = R[i] = i & 1 ? R[i / 2] * x : R[i / 2]; } vi rev(n); rep(i, n) rev[i] = (rev[i / 2] | (i & 1) << L) / 2; rep(i, n) if (i < rev[i]) swap(a[i], a[rev[i]]); for (int k = 1; k < n; k *= 2) for (int i = 0; i < n; i += 2 * k) rep(j, k) { // C z = rt[j+k] * a[i+j+k]; // (25% faster if hand-rolled) /// // include-line auto x = (ld *)&rt[j + k], y = (ld *)&a[i + j + k]; /// exclude-line C z(x[0] * y[0] - x[1] * y[1], x[0] * y[1] + x[1] * y[0]); /// exclude-line a[i + j + k] = a[i + j] - z; a[i + j] += z; } } vd conv(const vd &a, const vd &b) { if (a.empty() || b.empty()) return {}; vd res(sz(a) + sz(b) - 1); int L = 32 - __builtin_clz(sz(res)), n = 1 << L; vector<C> in(n), out(n); copy(all(a), begin(in)); rep(i, sz(b)) in[i].imag(b[i]); fft(in); for (C &x : in) x *= x; rep(i, n) out[i] = in[-i & (n - 1)] - conj(in[i]); fft(out); rep(i, sz(res)) res[i] = imag(out[i]) / (4 * n); return res; } constexpr int block_size = 1500; void sol() { int n, t; cin >> n >> t; vd p(n); rep(i, n) cin >> p[i]; sort(all(p), greater<ld>()); int start = t % 2; while ((n - start) % (2 * block_size) != 0) { n += 1; p.pb(0); } ld max_prob = 0, tot_prob = 0; vd dp; if (start == 1) { dp = {1 - p[0], p[0]}; if (t == 1) max_prob = tot_prob = dp[1]; } else { dp = {1}; } vd naive_dp(2 * block_size + 1); for (int block_l = start; block_l < n; block_l += 2 * block_size) { fill(all(naive_dp), 0); naive_dp[0] = 1; ld new_tot_prob = tot_prob; for (int i = 0; i < 2 * block_size; i += 2) { ld prob_first = p[block_l + i], prob_second = p[block_l + i + 1]; ld prob_c_first = 1 - prob_first, prob_c_second = 1 - prob_second; ld prob_none = prob_c_first * prob_c_second; ld prob_one = prob_first * prob_c_second + prob_c_first * prob_second; ld prob_two = prob_first * prob_second; for (int j = i + 2; j >= 2; j--) naive_dp[j] = naive_dp[j] * prob_none + naive_dp[j - 1] * prob_one + naive_dp[j - 2] * prob_two; naive_dp[1] = naive_dp[1] * prob_none + naive_dp[0] * prob_one; naive_dp[0] *= prob_none; int dp_threshold = (t + block_l) / 2; int threshold_delta = i / 2 + 1; new_tot_prob = tot_prob; int a = dp_threshold - threshold_delta; int b = dp_threshold; ld jump_sum = 0; rep(j, threshold_delta) { jump_sum += naive_dp[2 * threshold_delta - j]; if (a + j >= 0 && a + j < sz(dp)) new_tot_prob += dp[a + j] * jump_sum; } rep(j, threshold_delta) { jump_sum += naive_dp[threshold_delta - j]; if (b + j >= 0 && b + j < sz(dp)) new_tot_prob += dp[b + j] * (jump_sum - 1); } max_prob = max(max_prob, new_tot_prob); } dp = conv(dp, naive_dp); tot_prob = new_tot_prob; } cout << max_prob << '\n'; } int32_t main() { cin.tie(0)->sync_with_stdio(0); cout << fixed << setprecision(15); sol(); #ifdef LOCF cout.flush(); cerr << "- - - - - - - - -\n"; (void)!system( "grep VmPeak /proc/$PPID/status | sed s/....kB/\' MB\'/1 >&2"); // 4x.kB // ....kB #endif } |