#include <bits/stdc++.h> using namespace std; #define fwd(i, a, n) for (int i = (a); i < (n); i++) #define rep(i, n) fwd(i, 0, n) #define all(X) X.begin(), X.end() #define sz(X) int(size(X)) #define pb push_back #define eb emplace_back #define st first #define nd second using pii = pair<int, int>; using vi = vector<int>; using ll = long long; using ld = long double; #ifdef LOC auto SS = signal(6, [](int) { *(int *)0 = 0; }); # define DTP(x, y) \ auto operator<<(auto &o, auto a)->decltype(y, o) { \ o << "("; \ x; \ return o << ")"; \ } DTP(o << a.st << ", " << a.nd, a.nd); DTP(for (auto i : a) o << i << ", ", all(a)); void dump(auto... x) { ((cerr << x << ", "), ...) << '\n'; } # define deb(x...) cerr << setw(4) << __LINE__ << ":[" #x "]: ", dump(x) #else # define deb(...) 0 #endif struct fraction { int num, den; fraction(int n, int d) : num(n), den(d) { int g = __gcd(num, den); num /= g; den /= g; } bool operator<(const fraction &f) const { return 1ll * num * f.den < 1ll * f.num * den; } bool operator==(const fraction &f) const { return num == f.num && den == f.den; } }; constexpr int max_n = 18; constexpr int max_m = 100 * 1000; int dp[(1 << max_n)][max_n]; int n, m; constexpr int inf = 1e8; bitset<max_m> a[max_n]; vi load; int last_load_geq[max_m][max_n]; // Stuff for scaled grid int unit_length = 0, seg_length = 0; pii first_dp[max_n][max_m + 1]; int m_scaled; void prep_scaled_grid(const fraction &f) { // Length of one tile in scaled grid unit_length = f.den; // Length of one segment in scaled grid seg_length = f.num; m_scaled = m * unit_length; // Fill first_dp rep(row, n) { int next_nonempty = m; first_dp[row][m] = {inf * unit_length, inf * unit_length}; for (int col = m - 1; col >= 0; col--) { if (a[row][col] || load[col] == n - 1) next_nonempty = col; first_dp[row][col] = first_dp[row][col + 1]; if (unit_length * (next_nonempty - col) >= seg_length) first_dp[row][col] = { col * unit_length, next_nonempty * unit_length}; } } } int seg_set_earliest(int *ptr, int k) { int earliest = 0; if (k > 0) earliest = ptr[0] - seg_length; rep(i, k) { int seg_end = ptr[i]; int seg_end_block = (seg_end - 1) / unit_length; int overloaded_pos = last_load_geq[seg_end_block][n - 2 - i]; int overloaded_pos_end = unit_length * (overloaded_pos + 1); earliest = max(earliest, min(seg_end, overloaded_pos_end)); } return earliest; } int temp[max_n]; // PROSZE ZADZIALAJ GLUPTASIE JEDEN <3 <3 <3 ! ! ! bool ok_heuristic() { int reversed_inf = __builtin_bswap32(inf); fwd(mask, 1, 1 << n) fill(dp[mask], dp[mask] + n, reversed_inf); rep(mask, (1 << n) - 1) { int mask_size = __builtin_popcount(mask); if (mask_size > 0 && dp[mask][n - 1] == reversed_inf) continue; rep(i, mask_size) temp[i] = __builtin_bswap32(dp[mask][n - mask_size + i]); int earliest = seg_set_earliest(temp, mask_size); int pos_p = earliest / unit_length; if (pos_p >= m) continue; rep(to_add, n) if (!(mask & (1 << to_add))) { auto [new_seg_end, R] = first_dp[to_add][pos_p]; new_seg_end = max(new_seg_end, earliest); if (new_seg_end + seg_length > R) new_seg_end = first_dp[to_add][pos_p + 1].st; if (new_seg_end == inf) continue; new_seg_end += seg_length; int new_mask = mask | (1 << to_add); dp[mask][n - mask_size - 1] = __builtin_bswap32(new_seg_end); int new_size = mask_size + 1; int new_size_off = n - new_size; bool better = memcmp( dp[new_mask] + new_size_off, dp[mask] + new_size_off, new_size * sizeof(int)) > 0; if (better) { memcpy( dp[new_mask] + new_size_off, dp[mask] + new_size_off, new_size * sizeof(int)); } } } return dp[(1 << n) - 1][0] != reversed_inf; } void sol() { cin >> n >> m; string s; rep(i, n) { cin >> s; rep(j, m) a[i][j] = (s[j] == 'X') ? 1 : 0; } load = vi(m); rep(i, n) load[0] += a[i][0]; if (load[0] == n) { cout << "-1\n"; return; } rep(i, n) if (load[0] >= i) last_load_geq[0][i] = 0; else last_load_geq[0][i] = -1; fwd(j, 1, m) { rep(i, n) { load[j] += a[i][j]; last_load_geq[j][i] = last_load_geq[j - 1][i]; } if (load[j] == n) { cout << "-1\n"; return; } rep(i, load[j] + 1) last_load_geq[j][i] = j; } if (n == 1) { cout << "0/1\n"; return; } // Possible and N >= 2 // Go from fractions to scaled grid in order to operate on integers auto ok = [&](const fraction &f) -> bool { prep_scaled_grid(f); return ok_heuristic(); }; vector<fraction> fractions; fwd(num, 1, m + 1) fwd(den, 1, n + 1) fractions.pb(fraction(num, den)); sort(all(fractions)); fractions.erase(unique(all(fractions)), fractions.end()); fraction best(0, 1); int L = 0, R = sz(fractions); while (L < R) { int M = (L + R) / 2; fraction f = fractions[M]; if (ok(f)) { best = f; L = M + 1; } else { R = M; } } cout << best.num << '/' << best.den << '\n'; } int32_t main() { cin.tie(0)->sync_with_stdio(0); cout << fixed << setprecision(10); sol(); #ifdef LOCF cout.flush(); cerr << "- - - - - - - - -\n"; (void)!system( "grep VmPeak /proc/$PPID/status | sed s/....kB/\' MB\'/1 >&2"); // 4x.kB // ....kB #endif }
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 | #include <bits/stdc++.h> using namespace std; #define fwd(i, a, n) for (int i = (a); i < (n); i++) #define rep(i, n) fwd(i, 0, n) #define all(X) X.begin(), X.end() #define sz(X) int(size(X)) #define pb push_back #define eb emplace_back #define st first #define nd second using pii = pair<int, int>; using vi = vector<int>; using ll = long long; using ld = long double; #ifdef LOC auto SS = signal(6, [](int) { *(int *)0 = 0; }); # define DTP(x, y) \ auto operator<<(auto &o, auto a)->decltype(y, o) { \ o << "("; \ x; \ return o << ")"; \ } DTP(o << a.st << ", " << a.nd, a.nd); DTP(for (auto i : a) o << i << ", ", all(a)); void dump(auto... x) { ((cerr << x << ", "), ...) << '\n'; } # define deb(x...) cerr << setw(4) << __LINE__ << ":[" #x "]: ", dump(x) #else # define deb(...) 0 #endif struct fraction { int num, den; fraction(int n, int d) : num(n), den(d) { int g = __gcd(num, den); num /= g; den /= g; } bool operator<(const fraction &f) const { return 1ll * num * f.den < 1ll * f.num * den; } bool operator==(const fraction &f) const { return num == f.num && den == f.den; } }; constexpr int max_n = 18; constexpr int max_m = 100 * 1000; int dp[(1 << max_n)][max_n]; int n, m; constexpr int inf = 1e8; bitset<max_m> a[max_n]; vi load; int last_load_geq[max_m][max_n]; // Stuff for scaled grid int unit_length = 0, seg_length = 0; pii first_dp[max_n][max_m + 1]; int m_scaled; void prep_scaled_grid(const fraction &f) { // Length of one tile in scaled grid unit_length = f.den; // Length of one segment in scaled grid seg_length = f.num; m_scaled = m * unit_length; // Fill first_dp rep(row, n) { int next_nonempty = m; first_dp[row][m] = {inf * unit_length, inf * unit_length}; for (int col = m - 1; col >= 0; col--) { if (a[row][col] || load[col] == n - 1) next_nonempty = col; first_dp[row][col] = first_dp[row][col + 1]; if (unit_length * (next_nonempty - col) >= seg_length) first_dp[row][col] = { col * unit_length, next_nonempty * unit_length}; } } } int seg_set_earliest(int *ptr, int k) { int earliest = 0; if (k > 0) earliest = ptr[0] - seg_length; rep(i, k) { int seg_end = ptr[i]; int seg_end_block = (seg_end - 1) / unit_length; int overloaded_pos = last_load_geq[seg_end_block][n - 2 - i]; int overloaded_pos_end = unit_length * (overloaded_pos + 1); earliest = max(earliest, min(seg_end, overloaded_pos_end)); } return earliest; } int temp[max_n]; // PROSZE ZADZIALAJ GLUPTASIE JEDEN <3 <3 <3 ! ! ! bool ok_heuristic() { int reversed_inf = __builtin_bswap32(inf); fwd(mask, 1, 1 << n) fill(dp[mask], dp[mask] + n, reversed_inf); rep(mask, (1 << n) - 1) { int mask_size = __builtin_popcount(mask); if (mask_size > 0 && dp[mask][n - 1] == reversed_inf) continue; rep(i, mask_size) temp[i] = __builtin_bswap32(dp[mask][n - mask_size + i]); int earliest = seg_set_earliest(temp, mask_size); int pos_p = earliest / unit_length; if (pos_p >= m) continue; rep(to_add, n) if (!(mask & (1 << to_add))) { auto [new_seg_end, R] = first_dp[to_add][pos_p]; new_seg_end = max(new_seg_end, earliest); if (new_seg_end + seg_length > R) new_seg_end = first_dp[to_add][pos_p + 1].st; if (new_seg_end == inf) continue; new_seg_end += seg_length; int new_mask = mask | (1 << to_add); dp[mask][n - mask_size - 1] = __builtin_bswap32(new_seg_end); int new_size = mask_size + 1; int new_size_off = n - new_size; bool better = memcmp( dp[new_mask] + new_size_off, dp[mask] + new_size_off, new_size * sizeof(int)) > 0; if (better) { memcpy( dp[new_mask] + new_size_off, dp[mask] + new_size_off, new_size * sizeof(int)); } } } return dp[(1 << n) - 1][0] != reversed_inf; } void sol() { cin >> n >> m; string s; rep(i, n) { cin >> s; rep(j, m) a[i][j] = (s[j] == 'X') ? 1 : 0; } load = vi(m); rep(i, n) load[0] += a[i][0]; if (load[0] == n) { cout << "-1\n"; return; } rep(i, n) if (load[0] >= i) last_load_geq[0][i] = 0; else last_load_geq[0][i] = -1; fwd(j, 1, m) { rep(i, n) { load[j] += a[i][j]; last_load_geq[j][i] = last_load_geq[j - 1][i]; } if (load[j] == n) { cout << "-1\n"; return; } rep(i, load[j] + 1) last_load_geq[j][i] = j; } if (n == 1) { cout << "0/1\n"; return; } // Possible and N >= 2 // Go from fractions to scaled grid in order to operate on integers auto ok = [&](const fraction &f) -> bool { prep_scaled_grid(f); return ok_heuristic(); }; vector<fraction> fractions; fwd(num, 1, m + 1) fwd(den, 1, n + 1) fractions.pb(fraction(num, den)); sort(all(fractions)); fractions.erase(unique(all(fractions)), fractions.end()); fraction best(0, 1); int L = 0, R = sz(fractions); while (L < R) { int M = (L + R) / 2; fraction f = fractions[M]; if (ok(f)) { best = f; L = M + 1; } else { R = M; } } cout << best.num << '/' << best.den << '\n'; } int32_t main() { cin.tie(0)->sync_with_stdio(0); cout << fixed << setprecision(10); sol(); #ifdef LOCF cout.flush(); cerr << "- - - - - - - - -\n"; (void)!system( "grep VmPeak /proc/$PPID/status | sed s/....kB/\' MB\'/1 >&2"); // 4x.kB // ....kB #endif } |