1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
#include <algorithm>
#include <cstdio>
#include <vector>

class Number {
public:
  explicit Number(long long x) {
    if (x == 0) {
      exp_2 = exp_3 = exp_5 = exp_7 = -1;
      return;
    }
    auto helper = [](int p, int& exp, long long &x) {
      exp = 0;
      while (x % p == 0) {
        x /= p;
        ++exp;
      }    
    };
    helper(2, exp_2, x);
    helper(3, exp_3, x);
    helper(5, exp_5, x);
    helper(7, exp_7, x);
  }

  Number(int exp_2_, int exp_3_, int exp_5_, int exp_7_) {
    exp_2 = exp_2_;
    exp_3 = exp_3_;
    exp_5 = exp_5_;
    exp_7 = exp_7_;
  }

  Number(const Number& number) = default;

  bool CanDivide(Number x) {
    return x.exp_2 <= exp_2 &&
           x.exp_3 <= exp_3 &&
           x.exp_5 <= exp_5 &&
           x.exp_7 <= exp_7;
  }

  Number Divide(Number x) {
    return Number(exp_2 - x.exp_2, exp_3 - x.exp_3, exp_5 - x.exp_5, exp_7 - x.exp_7);
  }

  int exp_2;
  int exp_3;
  int exp_5;
  int exp_7;
};

class DigitizedNumber {
public:
  explicit DigitizedNumber(long long x) {
    // printf("konstruuje z %lld\n", x);
    if (x == 0) {
      digit.push_back(0);
      return;
    }
    while (x > 0) {
      // printf("x = %lld\n", x);
      digit.push_back(x % 10);
      // printf("pushing back %d\n", (int) (x) % 10);
      x /= 10;
    }
    std::reverse(digit.begin(), digit.end());
  }
  std::vector<int> digit;
};

long long preC[21][21];

void PrecalculateC() {
  preC[0][0] = 1;
  preC[1][0] = 1;
  preC[1][1] = 1;
  for (int n = 2; n <= 20; ++n) {
    for (int k = 0; k <= n; ++k) {
      preC[n][k] = preC[n-1][k-1] + preC[n-1][k];
    }
  }
}

// n <= 20
long long C(int n, int k) {
  return preC[n][k];
}

long long preD[21][61][39];

void PrecalculateD() {
  preD[0][0][0] = 1;
  for (int i = 1; i <= 20; ++i) {
    //printf("i = %d\n", i);
    for (int twos_ = 0; twos_ <= 60; ++twos_) {
      for (int threes = 0; threes <= 38; ++threes) {
        for (int eights = 0; eights <= twos_ / 3; ++eights) {
          int twos = twos_ - 3*eights;
          int new_i = i - eights;

          // Musimy zrobic liczbe skladajaca sie z new_i cyfr, a mamy do dyspozycji twos dwojek oraz threes trojek.
          // Nie wolno juz robic osemek.

          if (new_i < 0) {
            break;
          }

          if (new_i > twos + threes) {
            continue;
          }

          for (int fours = 0; fours <= twos / 2; ++fours) {
            for (int nines = 0; nines <= threes / 2; ++nines) {
              int j = new_i - fours - nines;
              int new_twos = twos - 2*fours;
              int new_threes = threes - 2*nines;
              if (j < 0) {
                break;
              }
              if (j > new_twos + new_threes) {
                continue;
              }
              // Doliczamy szostki.
              int sixes = new_twos + new_threes - j;
              if (sixes > new_twos || sixes > new_threes) {
                continue;
              }
              new_twos -= sixes;
              new_threes -= sixes;

              // printf("preD[%d][%d][%d] <- %d %d %d %d %d %d\n", i, twos_, threes, new_twos, new_threes, fours, sixes, eights, nines);

              // Liczymy calosc.
              preD[i][twos_][threes] +=
                C(i, eights) *
                C(i - eights, nines) *
                C(i - eights - nines, sixes) *
                C(i - eights - nines - sixes, fours) *
                C(i - eights - nines - sixes - fours, new_twos) *
                C(i - eights - nines - sixes - fours - new_twos, new_threes);
            }
          }
        }
      }
    }
  }
}

long long D(int length, int twos, int threes) {
  if (length < 0 || length > 20) return 0;
  if (twos < 0 || twos > 61) return 0;
  if (threes < 0 || threes > 39) return 0;

  return preD[length][twos][threes];
}

constexpr long long MX = 1000000000000000001;
std::vector<Number> special_number;
std::vector<long long> special_n;
std::vector<int> result_for_special;

long long Multiply(long long n) {
  long long result = 1;
  if (n == 0) {
      return 0;
  }
  while (n > 0) {
      result *= n%10;
      n /= 10;
  }
  return result;
}

int Algo(long long n) {
  while (n >= 10) {
      n = Multiply(n);
  }
  return (int) n;
}

long long Power(int a, int n) {
  long long result = 1;
  for (int i = 0; i < n; ++i) {
      result *= a;
  }
  return result;
}

void PrecalculateSpecial() {
  for (int w2 = 0; w2 < 60; ++w2) {
    for (int w3 = 0; w3 < 38; ++w3) {
        if (Power(2, w2) * Power(3, w3) > MX) {
          break;
        }
        for (int w5 = 0; w5 < 26; ++w5) {
          if (Power(2, w2) * Power(3, w3) * Power(5, w5) > MX) {
            break;
          }
          for (int w7 = 0; w7 < 22; ++w7) {
            if (Power(2, w2) * Power(3, w3) * Power(5, w5) * Power(7, w7) > MX) {
              break;
            }
            long long x = Power(2, w2) * Power(3, w3) * Power(5, w5) * Power(7, w7);
            special_number.emplace_back(w2, w3, w5, w7);
            special_n.push_back(x);
            result_for_special.push_back(Algo(x));
          }
        }
    }
  }
  //("mam specjalnych: %zu\n", special_n.size());
}

long long Count3(int length, Number x) {
  //("    count3(%d, %d %d %d %d)\n", length, x.exp_2, x.exp_3, x.exp_5, x.exp_7);
  long long c = C(length, x.exp_5) * C(length - x.exp_5, x.exp_7);
  length -= x.exp_5 + x.exp_7;
  if (length < 0) {
    return 0;
  }

  if (length > x.exp_2 + x.exp_3) {
    return 0;
  }

  return D(length, x.exp_2, x.exp_3) * c;
}

long long Count2(int length, Number x) {
  //("  count2(%d, %d %d %d %d)\n", length, x.exp_2, x.exp_3, x.exp_5, x.exp_7);
  long long result = 0;
  for (int ones = 0; ones <= length; ++ones) {
    //printf("  ones = %d\n", ones);
    long long partial_result = Count3(length - ones, x);
    //printf("  partial_result = %lld\n", partial_result);
    result += C(length, ones) * partial_result;
  }
  return result;
}

long long Count(DigitizedNumber n, Number x) {
  long long result = 0;
  for (int len = 1; len < n.digit.size(); ++len) {
    long long partial_result = Count2(len, x);
    //printf("len = %d partial_result = %lld\n", len, partial_result);
    result += partial_result;
  }
  //printf("size of digits %zu\n", n.digit.size());
  for (int i = 0; i < n.digit.size(); ++i) {
    //printf("digit[%d] = %d\n", i, n.digit[i]);
    for (int set_digit = 1; set_digit < n.digit[i]; ++set_digit) {
      //printf("Ustawiam cyfre na %d\n", set_digit);
      Number d{set_digit};
      if (x.CanDivide(d)) {
        //printf("Moge dzielic, ide dalej.");
        result += Count2(n.digit.size() - i - 1, x.Divide(d));
      }
    }
    Number d{n.digit[i]};
    if (!x.CanDivide(d)) {
      break;
    }
    x = x.Divide(d);
  }
  return result;
}

void Solve() {
  long long n;
  scanf("%lld", &n);
  std::vector<long long> result(10, 0);
  for (size_t idx = 0; idx < special_n.size(); ++idx) {
    if (special_n[idx] > n) {
      continue;
    }
    if (special_n[idx] > 10) {
      //--result[result_for_special[idx]];
    }
    //printf("----------------------------licze dla %lld\n", special_n[idx]);
    const auto partial_sum = Count(DigitizedNumber{n}, special_number[idx]);
    result[result_for_special[idx]] += partial_sum;
    //printf("result[%d] += %lld\n", result_for_special[idx], partial_sum);
  }
  result[Algo(n)]++;
  result[0] = n;
  for (int i = 1; i <= 9; ++i) result[0] -= result[i];
  for (const auto& r : result) printf("%lld ", r);
  printf("\n");
}

int main() {
  PrecalculateC();
  PrecalculateD();
  PrecalculateSpecial();
  int t;
  scanf("%d", &t);

  for (int tc = 0; tc < t; ++tc) {
    Solve();
  }
}