#include <iostream> #include <string> #include <cassert> #include <algorithm> #include <vector> #include <cmath> // Config selector: // 1 == Debug // 0 == Release #if 0 // Debug config #define ASSERT(expr) assert(expr) #define DBG(expr) expr #else // Release config #define ASSERT(expr) do {} while (0) #define DBG(expr) do {} while (0) #endif static bool is_square(int num) { int const maybe_root = (int)std::sqrt(double(num)); //std::cout << "is_square(" << num << "): maybe_root=" << maybe_root << '\n'; return maybe_root * maybe_root == num; } // It tests is_square() for all integers in range [1; (max_n+1)**2-1]. static void test_is_square(int max_n) { std::cout << "testing is_square() up to " << (max_n+1)*(max_n+1)-1 << "...\n"; for (int i = 1; i <= max_n; ++i) { // Test numbers in range [i**2, (i+1)**2-1] int c = i * i; if (!is_square(c)) { std::cout << "Error: expected is_square(" << c << ") to be true\n"; } for (++c; c < (i+1)*(i+1); ++c) { if (is_square(c)) { std::cout << "Error: expected is_square(" << c << ") to be false\n"; } } } std::cout << "done testing is_square()\n"; } /* * Counts the number of ({a, b}, h) for positive integers a, b, h such that * a^2 + b^2 + h^2 <= n^2 * and the left side is a square of integer. * * Assumption: 1 <= n <= 5000. * * Complexity: O(n^3) * Calls to std::sqrt: O(n^3) */ static int compute_answer_brute_force(int n) { DBG(std::cout << "called compute_answer_brute_force(" << n << ")\n"); int const n_square = n * n; int result = 0; for (int a = 1; a < n; ++a) { int const a_square = a * a; for (int b = a; a_square + b * b < n_square; ++b) { int const b_square = b * b; for (int h = 1; a_square + b_square + h * h <= n_square; ++h) { int const h_square = h * h; result += is_square(a_square + b_square + h_square); } } } return result; } /* * Complexity: O(n^3) * Calls to std::sqrt: O(n^2) */ static int compute_answer_reduced_float_ops(int n) { DBG(std::cout << "called compute_answer_reduced_float_ops(" << n << ")\n"); int const n_square = n * n; int result = 0; for (int a = 1; a < n; ++a) { int const a_square = a * a; for (int b = a; a_square + b * b < n_square; ++b) { int const b_square = b * b; int h = 1; int h_square = h * h; int candidate = a_square + b_square + h_square; // Rounding down: int root = (int)std::sqrt(double(candidate)); // Ensure invariant: while (root * root < candidate) ++root; // Invariant: root * root >= candidate while (candidate <= n_square) { // Instead of is_square(candidate) we check if candidate hit root * root. result += candidate == root * root; // Prepare for next iteration. ++h; h_square = h * h; candidate = a_square + b_square + h_square; // Ensure invariant: while (root * root < candidate) ++root; } } } return result; } /* * Still O(n^3), but lower constant factor. */ static int compute_answer_faster(int n) { DBG(std::cout << "called compute_answer_faster(" << n << ")\n"); int const n_square = n * n; // We iterate over a <= b <= h and if solution is found, we need to take into account that h does not have any // constraint. int result = 0; for (int a = 1; a < n; ++a) { int const a_square = a * a; for (int b = a; a_square + b * b < n_square; ++b) { int const b_square = b * b; int const start_point = a_square + b_square + b_square; // the last term is start point for h squared int diagonal = (int)std::sqrt(double(start_point)); if (diagonal * diagonal < start_point) ++diagonal; // main loop: while (diagonal * diagonal <= n_square) { int const maybe_h_square = diagonal * diagonal - a_square - b_square; int const h = (int)std::sqrt(double(maybe_h_square)); if (h * h == maybe_h_square) { if (a < b) { if (b < h) { result += 3; } else { // b == h result += 2; } } else { // a == b if (b < h) { result += 2; } else { // b == h result += 1; } } } // try next square ++diagonal; } } } return result; } int main() { std::ios_base::sync_with_stdio(false); std::cin.tie(NULL); //test_is_square(n); int n; std::cin >> n; std::cout << compute_answer_faster(n) << '\n'; }
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 | #include <iostream> #include <string> #include <cassert> #include <algorithm> #include <vector> #include <cmath> // Config selector: // 1 == Debug // 0 == Release #if 0 // Debug config #define ASSERT(expr) assert(expr) #define DBG(expr) expr #else // Release config #define ASSERT(expr) do {} while (0) #define DBG(expr) do {} while (0) #endif static bool is_square(int num) { int const maybe_root = (int)std::sqrt(double(num)); //std::cout << "is_square(" << num << "): maybe_root=" << maybe_root << '\n'; return maybe_root * maybe_root == num; } // It tests is_square() for all integers in range [1; (max_n+1)**2-1]. static void test_is_square(int max_n) { std::cout << "testing is_square() up to " << (max_n+1)*(max_n+1)-1 << "...\n"; for (int i = 1; i <= max_n; ++i) { // Test numbers in range [i**2, (i+1)**2-1] int c = i * i; if (!is_square(c)) { std::cout << "Error: expected is_square(" << c << ") to be true\n"; } for (++c; c < (i+1)*(i+1); ++c) { if (is_square(c)) { std::cout << "Error: expected is_square(" << c << ") to be false\n"; } } } std::cout << "done testing is_square()\n"; } /* * Counts the number of ({a, b}, h) for positive integers a, b, h such that * a^2 + b^2 + h^2 <= n^2 * and the left side is a square of integer. * * Assumption: 1 <= n <= 5000. * * Complexity: O(n^3) * Calls to std::sqrt: O(n^3) */ static int compute_answer_brute_force(int n) { DBG(std::cout << "called compute_answer_brute_force(" << n << ")\n"); int const n_square = n * n; int result = 0; for (int a = 1; a < n; ++a) { int const a_square = a * a; for (int b = a; a_square + b * b < n_square; ++b) { int const b_square = b * b; for (int h = 1; a_square + b_square + h * h <= n_square; ++h) { int const h_square = h * h; result += is_square(a_square + b_square + h_square); } } } return result; } /* * Complexity: O(n^3) * Calls to std::sqrt: O(n^2) */ static int compute_answer_reduced_float_ops(int n) { DBG(std::cout << "called compute_answer_reduced_float_ops(" << n << ")\n"); int const n_square = n * n; int result = 0; for (int a = 1; a < n; ++a) { int const a_square = a * a; for (int b = a; a_square + b * b < n_square; ++b) { int const b_square = b * b; int h = 1; int h_square = h * h; int candidate = a_square + b_square + h_square; // Rounding down: int root = (int)std::sqrt(double(candidate)); // Ensure invariant: while (root * root < candidate) ++root; // Invariant: root * root >= candidate while (candidate <= n_square) { // Instead of is_square(candidate) we check if candidate hit root * root. result += candidate == root * root; // Prepare for next iteration. ++h; h_square = h * h; candidate = a_square + b_square + h_square; // Ensure invariant: while (root * root < candidate) ++root; } } } return result; } /* * Still O(n^3), but lower constant factor. */ static int compute_answer_faster(int n) { DBG(std::cout << "called compute_answer_faster(" << n << ")\n"); int const n_square = n * n; // We iterate over a <= b <= h and if solution is found, we need to take into account that h does not have any // constraint. int result = 0; for (int a = 1; a < n; ++a) { int const a_square = a * a; for (int b = a; a_square + b * b < n_square; ++b) { int const b_square = b * b; int const start_point = a_square + b_square + b_square; // the last term is start point for h squared int diagonal = (int)std::sqrt(double(start_point)); if (diagonal * diagonal < start_point) ++diagonal; // main loop: while (diagonal * diagonal <= n_square) { int const maybe_h_square = diagonal * diagonal - a_square - b_square; int const h = (int)std::sqrt(double(maybe_h_square)); if (h * h == maybe_h_square) { if (a < b) { if (b < h) { result += 3; } else { // b == h result += 2; } } else { // a == b if (b < h) { result += 2; } else { // b == h result += 1; } } } // try next square ++diagonal; } } } return result; } int main() { std::ios_base::sync_with_stdio(false); std::cin.tie(NULL); //test_is_square(n); int n; std::cin >> n; std::cout << compute_answer_faster(n) << '\n'; } |