#include <cmath> #include <cstdio> #include <vector> #define DEBUG false using namespace std; // TODO: if we nee to optimize, we can create a vector of possible IDs and iterate over it instead of [0, ZERO_ID] // number is compressed into an ID based on its digit product prime factors. // all numbers with the same ID will produce the same digit at the end. // if 2 and 5 are present, the result will always be 0 so they can't be both in there. const int val_2_5 = 1; const int val_3 = 55; const int val_7 = val_3 * 37; const int val_parity = val_7 * 19; // parity 0 -> 2s only, parity 1 -> 5s only const int ZERO_ID = val_parity * 2; int addvalues[10] = { ZERO_ID, // 0 0, // 1 val_2_5, // 2 val_3, // 3 val_2_5 * 2, // 4 val_2_5, // 5 val_2_5+val_3, // 6 val_7, // 7 val_2_5 * 3, // 8 val_3 * 2, // 9 }; long long power10[20] = { 1LL, // 0 10LL, // 1 100LL, // 2 1000LL, // 3 10000LL, // 4 100000LL, // 5 1000000LL, // 6 10000000LL, // 7 100000000LL, // 8 1000000000LL, // 9 10000000000LL, // 10 100000000000LL, // 11 1000000000000LL, // 12 10000000000000LL, // 13 100000000000000LL, // 14 1000000000000000LL, // 15 10000000000000000LL, // 16 100000000000000000LL, // 17 1000000000000000000LL, // 18 }; // transitions[X][Y] = id you get by adding digit Y to id X // some transitions will be nonsense, but it's ok since they never happen int transitions[ZERO_ID+1][10]; // id_digits[X] = digit you get when converting number of id X int id_digits[ZERO_ID+1]; int multiply(int id, int next_digit) { if (id > ZERO_ID) return ZERO_ID; if (id == ZERO_ID || next_digit == 0) return ZERO_ID; int new_id = id; if (id % val_3 > 0) { // it has at least one 2 or 5 if (id < val_parity && next_digit == 5) { // has 2s, and we brought a 5 return ZERO_ID; } if (id > val_parity && next_digit % 2 == 0) { // has 5s, and we brought a 2/4/8 return ZERO_ID; } } else if (next_digit == 5) { // first 5; set parity value new_id += val_parity; } new_id += addvalues[next_digit]; if (new_id > ZERO_ID) return ZERO_ID; // some transitions will be nonsense and its ok return new_id; } void initialize_transitions() { for (int i = 0; i <= ZERO_ID; ++i) { for (int d = 0; d <= 9; ++d) { transitions[i][d] = multiply(i, d); } } } int end_digit_from_number(long long number) { if (number < 10) { return static_cast<int>(number); } long long product = 1; while (number > 0) { product *= number % 10; number /= 10; } if (product < 10) { return static_cast<int>(product); } return end_digit_from_number(product); } int end_digit_from_id(int id) { if (id == ZERO_ID) return 0; long long product = 1; long long d2_5 = 2; if (id > val_parity) { d2_5 = 5; id -= val_parity; } int num2_5 = id % val_3; id /= val_3; int num3 = id % 37; id /= 37; int num7 = id; product *= pow(d2_5, num2_5); product *= pow(3, num3); product *= pow(7, num7); return end_digit_from_number(product); } void initialize_id_digits() { for (int i = 0; i <= ZERO_ID; ++i) { id_digits[i] = end_digit_from_id(i); } } int number_to_id(long long number) { if (number == 0) return ZERO_ID; int id = 0; while (number > 0) { id = transitions[id][static_cast<int>(number % 10)]; number /= 10; } return id; } int get_length(long long number) { // this can be faster but do we need it to be tbh for (int i = 0; i < 20; ++i) { if (number < power10[i]) { return i; } } return 19; } // full_lenclass_id_count[D][X][Y] = number of numbers (starting with nonzero) of length X of id Y starting with digit lower/equal to D long long full_lenclass_id_count[10][20][ZERO_ID+1]; // similar to above, but counts numbers of all lengths up to X long long full_lenclass_upto_id_count[10][20][ZERO_ID+1]; void initialize_full_lenclass_array() { // TODO: I think we don't inlude zero here for (int i = 1; i < 10; ++i) { for (int j = i; j < 10; ++j) { full_lenclass_id_count[j][1][number_to_id(i)] = 1; full_lenclass_upto_id_count[j][1][number_to_id(i)] = 1; } } for (int l = 2; l <= 19; ++l) { for (int i = 1; i < 10; ++i) { if (DEBUG) printf("Calcing L = %d, i = %d\n", l, i); for (int id = 0; id <= ZERO_ID; ++id) { // l = new number length // i = first digit of the new number // id = in this iteration we only care about numbers with this id // add digit X to any number of lower length int new_id = transitions[id][i]; full_lenclass_id_count[i][l][new_id] += full_lenclass_id_count[9][l-1][id]; // include previous-digit results full_lenclass_id_count[i][l][id] += full_lenclass_id_count[i-1][l][id]; } // add digit X and zeros to any number of length at least 2 lower full_lenclass_id_count[i][l][ZERO_ID] += power10[l-2]; } for (int i = 1; i < 10; ++i) { for (int id = 0; id <= ZERO_ID; ++id) { // same as above but sum Ls full_lenclass_upto_id_count[i][l][id] = full_lenclass_id_count[i][l][id] + full_lenclass_upto_id_count[i][l-1][id]; } } } } void get_digit_counts(long long n) { if (DEBUG) printf("============================================\n"); if (DEBUG) printf("STARTING PROCESS FOR %lld\n", n); long long digit_counts[10] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0}; vector<long long> id_results(ZERO_ID+1, 0); if (n == 1000'000'000'000'000'000LL) { // We can only handle numbers with length of up to 18 digits digit_counts[0] += 1; n--; } // compute all IDs of length = L, starting with last digit int full_length = get_length(n); long long n2 = n; int length = 0; while (n2 > 0) { int last_dig = static_cast<int>(n2 % 10LL); n2 /= 10LL; length += 1; if (DEBUG) printf("Working on digit %d\n", last_dig); // add this digit to all previous numbers for (int i = ZERO_ID; i >= 0; --i) { long long old_ids = id_results[i]; id_results[i] = 0; id_results[transitions[i][last_dig]] += old_ids; } if (DEBUG) printf("Added all prevnumbers multed\n"); // add numbers attainable with lower digits (add [<d][any l-1]) if (last_dig > 1) { if (DEBUG) printf("Zero params: %d %d\n", last_dig-1, length); if (DEBUG) printf("Adding %lld zeros through dig-1\n", full_lenclass_id_count[last_dig - 1][length][ZERO_ID]); for (int i = ZERO_ID; i >= 0; --i) { id_results[i] += full_lenclass_id_count[last_dig - 1][length][i]; } } if (DEBUG) printf("Added all lowerdigits\n"); // add zeros for next dig if (last_dig > 0 && n2 > 0) { if (DEBUG) printf("Adding %lld zeros\n", power10[length-1]); id_results[ZERO_ID] += power10[length-1]; } if (DEBUG) printf("Added zeros\n"); } // HERE WE HAVE ALL NUMBERS OF LENGTH EQUAL TO LEN(N) if (full_length > 1) { for (int i = ZERO_ID; i >= 0; --i) { id_results[i] += full_lenclass_upto_id_count[9][full_length-1][i]; digit_counts[id_digits[i]] += id_results[i]; } } // not sure why its not counted but lets go int maxdig = id_digits[number_to_id(n)]; digit_counts[maxdig]++; // PRINT THE DIGITS for (int i = 0; i < 10; ++i) { printf("%lld ", digit_counts[i]); } printf("\n"); } int main() { if (DEBUG) printf("transition init\n"); initialize_transitions(); if (DEBUG) printf("id digit init\n"); initialize_id_digits(); if (DEBUG) printf("full_lenclass init\n"); initialize_full_lenclass_array(); if (DEBUG) printf("init done\n"); int t; scanf("%d", &t); for (int t_i = 0; t_i < t; ++t_i) { long long n; scanf("%lld", &n); get_digit_counts(n); } return 0; }
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 | #include <cmath> #include <cstdio> #include <vector> #define DEBUG false using namespace std; // TODO: if we nee to optimize, we can create a vector of possible IDs and iterate over it instead of [0, ZERO_ID] // number is compressed into an ID based on its digit product prime factors. // all numbers with the same ID will produce the same digit at the end. // if 2 and 5 are present, the result will always be 0 so they can't be both in there. const int val_2_5 = 1; const int val_3 = 55; const int val_7 = val_3 * 37; const int val_parity = val_7 * 19; // parity 0 -> 2s only, parity 1 -> 5s only const int ZERO_ID = val_parity * 2; int addvalues[10] = { ZERO_ID, // 0 0, // 1 val_2_5, // 2 val_3, // 3 val_2_5 * 2, // 4 val_2_5, // 5 val_2_5+val_3, // 6 val_7, // 7 val_2_5 * 3, // 8 val_3 * 2, // 9 }; long long power10[20] = { 1LL, // 0 10LL, // 1 100LL, // 2 1000LL, // 3 10000LL, // 4 100000LL, // 5 1000000LL, // 6 10000000LL, // 7 100000000LL, // 8 1000000000LL, // 9 10000000000LL, // 10 100000000000LL, // 11 1000000000000LL, // 12 10000000000000LL, // 13 100000000000000LL, // 14 1000000000000000LL, // 15 10000000000000000LL, // 16 100000000000000000LL, // 17 1000000000000000000LL, // 18 }; // transitions[X][Y] = id you get by adding digit Y to id X // some transitions will be nonsense, but it's ok since they never happen int transitions[ZERO_ID+1][10]; // id_digits[X] = digit you get when converting number of id X int id_digits[ZERO_ID+1]; int multiply(int id, int next_digit) { if (id > ZERO_ID) return ZERO_ID; if (id == ZERO_ID || next_digit == 0) return ZERO_ID; int new_id = id; if (id % val_3 > 0) { // it has at least one 2 or 5 if (id < val_parity && next_digit == 5) { // has 2s, and we brought a 5 return ZERO_ID; } if (id > val_parity && next_digit % 2 == 0) { // has 5s, and we brought a 2/4/8 return ZERO_ID; } } else if (next_digit == 5) { // first 5; set parity value new_id += val_parity; } new_id += addvalues[next_digit]; if (new_id > ZERO_ID) return ZERO_ID; // some transitions will be nonsense and its ok return new_id; } void initialize_transitions() { for (int i = 0; i <= ZERO_ID; ++i) { for (int d = 0; d <= 9; ++d) { transitions[i][d] = multiply(i, d); } } } int end_digit_from_number(long long number) { if (number < 10) { return static_cast<int>(number); } long long product = 1; while (number > 0) { product *= number % 10; number /= 10; } if (product < 10) { return static_cast<int>(product); } return end_digit_from_number(product); } int end_digit_from_id(int id) { if (id == ZERO_ID) return 0; long long product = 1; long long d2_5 = 2; if (id > val_parity) { d2_5 = 5; id -= val_parity; } int num2_5 = id % val_3; id /= val_3; int num3 = id % 37; id /= 37; int num7 = id; product *= pow(d2_5, num2_5); product *= pow(3, num3); product *= pow(7, num7); return end_digit_from_number(product); } void initialize_id_digits() { for (int i = 0; i <= ZERO_ID; ++i) { id_digits[i] = end_digit_from_id(i); } } int number_to_id(long long number) { if (number == 0) return ZERO_ID; int id = 0; while (number > 0) { id = transitions[id][static_cast<int>(number % 10)]; number /= 10; } return id; } int get_length(long long number) { // this can be faster but do we need it to be tbh for (int i = 0; i < 20; ++i) { if (number < power10[i]) { return i; } } return 19; } // full_lenclass_id_count[D][X][Y] = number of numbers (starting with nonzero) of length X of id Y starting with digit lower/equal to D long long full_lenclass_id_count[10][20][ZERO_ID+1]; // similar to above, but counts numbers of all lengths up to X long long full_lenclass_upto_id_count[10][20][ZERO_ID+1]; void initialize_full_lenclass_array() { // TODO: I think we don't inlude zero here for (int i = 1; i < 10; ++i) { for (int j = i; j < 10; ++j) { full_lenclass_id_count[j][1][number_to_id(i)] = 1; full_lenclass_upto_id_count[j][1][number_to_id(i)] = 1; } } for (int l = 2; l <= 19; ++l) { for (int i = 1; i < 10; ++i) { if (DEBUG) printf("Calcing L = %d, i = %d\n", l, i); for (int id = 0; id <= ZERO_ID; ++id) { // l = new number length // i = first digit of the new number // id = in this iteration we only care about numbers with this id // add digit X to any number of lower length int new_id = transitions[id][i]; full_lenclass_id_count[i][l][new_id] += full_lenclass_id_count[9][l-1][id]; // include previous-digit results full_lenclass_id_count[i][l][id] += full_lenclass_id_count[i-1][l][id]; } // add digit X and zeros to any number of length at least 2 lower full_lenclass_id_count[i][l][ZERO_ID] += power10[l-2]; } for (int i = 1; i < 10; ++i) { for (int id = 0; id <= ZERO_ID; ++id) { // same as above but sum Ls full_lenclass_upto_id_count[i][l][id] = full_lenclass_id_count[i][l][id] + full_lenclass_upto_id_count[i][l-1][id]; } } } } void get_digit_counts(long long n) { if (DEBUG) printf("============================================\n"); if (DEBUG) printf("STARTING PROCESS FOR %lld\n", n); long long digit_counts[10] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0}; vector<long long> id_results(ZERO_ID+1, 0); if (n == 1000'000'000'000'000'000LL) { // We can only handle numbers with length of up to 18 digits digit_counts[0] += 1; n--; } // compute all IDs of length = L, starting with last digit int full_length = get_length(n); long long n2 = n; int length = 0; while (n2 > 0) { int last_dig = static_cast<int>(n2 % 10LL); n2 /= 10LL; length += 1; if (DEBUG) printf("Working on digit %d\n", last_dig); // add this digit to all previous numbers for (int i = ZERO_ID; i >= 0; --i) { long long old_ids = id_results[i]; id_results[i] = 0; id_results[transitions[i][last_dig]] += old_ids; } if (DEBUG) printf("Added all prevnumbers multed\n"); // add numbers attainable with lower digits (add [<d][any l-1]) if (last_dig > 1) { if (DEBUG) printf("Zero params: %d %d\n", last_dig-1, length); if (DEBUG) printf("Adding %lld zeros through dig-1\n", full_lenclass_id_count[last_dig - 1][length][ZERO_ID]); for (int i = ZERO_ID; i >= 0; --i) { id_results[i] += full_lenclass_id_count[last_dig - 1][length][i]; } } if (DEBUG) printf("Added all lowerdigits\n"); // add zeros for next dig if (last_dig > 0 && n2 > 0) { if (DEBUG) printf("Adding %lld zeros\n", power10[length-1]); id_results[ZERO_ID] += power10[length-1]; } if (DEBUG) printf("Added zeros\n"); } // HERE WE HAVE ALL NUMBERS OF LENGTH EQUAL TO LEN(N) if (full_length > 1) { for (int i = ZERO_ID; i >= 0; --i) { id_results[i] += full_lenclass_upto_id_count[9][full_length-1][i]; digit_counts[id_digits[i]] += id_results[i]; } } // not sure why its not counted but lets go int maxdig = id_digits[number_to_id(n)]; digit_counts[maxdig]++; // PRINT THE DIGITS for (int i = 0; i < 10; ++i) { printf("%lld ", digit_counts[i]); } printf("\n"); } int main() { if (DEBUG) printf("transition init\n"); initialize_transitions(); if (DEBUG) printf("id digit init\n"); initialize_id_digits(); if (DEBUG) printf("full_lenclass init\n"); initialize_full_lenclass_array(); if (DEBUG) printf("init done\n"); int t; scanf("%d", &t); for (int t_i = 0; t_i < t; ++t_i) { long long n; scanf("%lld", &n); get_digit_counts(n); } return 0; } |