1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
#ifndef LOC
#define NDEBUG
#endif
#include <bits/stdc++.h>
using namespace std;
#define fwd(i, a, n) for (int i = (a); i < (n); i++)
#define rep(i, n) fwd(i, 0, n)
#define all(X) X.begin(), X.end()
#define sz(X) int(ssize(X))
#define pb push_back
#define eb emplace_back
#define st first
#define nd second
using pii = pair<int, int>; using vi = vector<int>;
using ll = long long; using ld = long double;
#ifdef LOC
auto SS = signal(6, [](int) { *(int *)0 = 0; });
#define DTP(x, y) auto operator<<(auto &o, auto a) -> decltype(y, o) { o << "("; x; return o << ")"; }
auto operator<<(auto &o, auto a) -> decltype(all(a), o);
DTP(o << a.st << ", " << a.nd, a.nd);
DTP(for (auto i : a) o << i << ", ", all(a));
#define deb(x...) cerr << setw(4) << __LINE__ << ":[" #x "]: ", [](auto... arg_) { (( cerr << arg_ << ", " ), ...) << '\n'; }(x)
#else
#define deb(...) 0
#endif

pii operator+(pii a, pii b) {
    return {a.st + b.st, a.nd + b.nd};
}

namespace brute {
template <class T>
int solve(map<pii, T> mapka) {
    int ans = 0, here = 1;
    while (here) {
        here = 0;
        for (auto it = mapka.begin(); it != mapka.end();) {
            pii coord = it->first;
            bool rem = !mapka.contains(coord + pii{0, 1}) && !mapka.contains(coord + pii{0, -1});
            rem |= !mapka.contains(coord + pii{1, 0}) && !mapka.contains(coord + pii{-1, 0});

            if (rem) {
                here = 1;
                ++ans;
                it = mapka.erase(it);
            }
            else {
                ++it;
            }
        }
    }
    return ans;
}
}

enum NodeType {
    PATH, CYCLE, HIGH, DISCO
};

bool areDiagonal(pii a, pii b) {
    return abs(a.st - b.st) == 1 && abs(a.nd - b.nd) == 1;
}

int dist(pii a, pii b) {
    return abs(a.st - b.st) + abs(a.nd - b.nd);
}

bool opposite(pii a, pii b) {
    int x = abs(a.st - b.st), y = abs(a.nd - b.nd);
    if (x == 2 && y == 0) return true;
    if (x == 0 && y == 2) return true;
    return false;
}

vi filterNodes(array<array<int, 3>, 3> nodes) {
    vi v;
    for (auto &a : nodes) for (int b : a) if (b != -1)
        v.pb(b);
    return v;
}

struct Treap {
    int ANS = 0;

	struct Node {
		// E[0] = left child, E[1] = right child
		// weight = node random weight (for treap)
		// size = subtree size, par = parent node
		int E[2] = {-1, -1}, weight = rand();
		int size = 1, par = -1;
		bool flip = 0; // Is interval reversed?

        bool isActiv = true;
        vi neis;
        bool partOfAns = false;
        pii xy{};
        int typ = DISCO;
        int partOfSquare = 0;
        int threeInARow = 0;
        int threeInARowOverChild = 0;

        // void debnode(int i) {
        //     // deb(i, E[0], E[1], size, par, flip, isActiv);
        //     deb(i,neis, partOfAns, xy, typ, partOfSquare, threeInARow, threeInARowOverChild);
        // }
	};

    // void debTreap() {
    //     rep(i, sz(G)) if (G[i].isActiv) {
    //         G[i].debnode(i);
    //     }
    //     assertTreap();
    // }
    // void assertTreap() {
    //     rep(i, sz(G)) if (G[i].isActiv) {
    //         assert(mapka.find(G[i].xy)->second == i);
    //     }
    // }

    void disconnectPath(int x, int y) {
        // deb("disco", x, y);

        int rx = root(x);
        excludeFromAns(rx);
        assert(rx == root(y));
        if (G[rx].typ == CYCLE) {
            int idx = index(x);
            int idy = index(y);

            assert(abs(idx - idy) == 1 || (min(idx, idy) == 0 && max(idx, idy)+1 == G[rx].size));

            rx = shiftLeft(rx, idx); // x na pozycji 0

            if (index(y) == 1)
                rx = reverse(rx, 1, G[rx].size);
            assert(index(y) + 1 == G[rx].size);

            G[rx].typ = PATH;
            return;
        }

        int idx = index(x);
        int idy = index(y);
        if (idx > idy) {
            swap(idx, idy);
            swap(x, y);
        }
        int _1, _2;
        split(rx, _1, _2, idx + 1);
        G[_1].typ = PATH;
        G[_2].typ = PATH;
    }

    int shiftLeft(int root, int by) { // [by)[_) --> [_)[by)
        int a, b;
        split(root, a, b, by);
        return join(b, a);
    }

    void connectPath(int x, int y) {
        // deb(x, y);
        int rx = root(x), ry = root(y);
        excludeFromAns(rx);
        excludeFromAns(ry);

        if (rx == ry) {
            assert(G[rx].typ == PATH);
            G[rx].typ = CYCLE;
            return;
        }

        flipToFront(x);
        flipToFront(y);
        G[rx].flip ^= 1;
        join(rx, ry);
    }

    void disconnect(int x) { // also calls excludeFromAns
        // if (G[x].typ == DISCO) {
        //     deb(x);
        //     cerr << "---\n";
        //     debTreap();
        //     exit(-1);
        // }
        assert(G[x].typ != DISCO);
        int rt = root(x);
        excludeFromAns(rt);
        if (G[rt].size == 1) {
            G[x].typ = DISCO;
            return;
        }
        assert(G[x].typ != HIGH);

        for (int i : G[x].neis) {
            if (G[i].typ == DISCO || sz(G[i].neis) >= 3)
                continue;
            disconnectPath(i, x);
        }

        assert(G[x].par == -1 && G[x].size == 1);
        G[x].typ = DISCO;
    }
    void reconnect(int x) { // does not call recheckPartOfAns
        assert(G[x].typ == DISCO);
        if (sz(G[x].neis) >= 3) {
            G[x].typ = HIGH;
            return;
        }
        G[x].threeInARow = 0;
        if (sz(G[x].neis) == 2) {
            int a = G[x].neis[0], b = G[x].neis[1];
            if (opposite(G[a].xy, G[b].xy))
                G[x].threeInARow = 1;
        }
        update(x);
        assert(G[x].par == -1 && G[x].size == 1);
        G[x].typ = PATH;

        for (int i : G[x].neis) {
            if (G[i].typ == DISCO || sz(G[i].neis) >= 3)
                continue;

            // debTreap();
            // deb("\n");

            connectPath(i, x);
        }
        assert(G[x].typ != DISCO);
    }

    bool areDiagonallySeparatedPartOfSquares(const vi &v) {
        if (sz(v) != 2) return false;
        int a = v[0], b = v[1];
        return areDiagonal(G[a].xy, G[b].xy) && G[a].partOfSquare && G[b].partOfSquare;
    }

    void flipToFront(int i) {
        if (index(i) == 0) return;
        G[root(i)].flip ^= true;
        assert(index(i) == 0);
    }

    bool isEndOfPathBlocked(int x) { // x is end of path
        if (sz(G[x].neis) <= 1)
            return false;
        assert(sz(G[x].neis) == 2);
        int a = G[x].neis[0], b = G[x].neis[1];
        if (G[a].typ != PATH) swap(a, b);
        assert(G[a].typ == PATH);
        assert(G[b].typ == HIGH);

        return areDiagonal(G[a].xy, G[b].xy) && G[b].partOfSquare;
    }

    void recheckPartOfAns(int x) {
        assert(x == root(x));

        bool newPartOfAns = true;

        if (G[x].typ == PATH) {
            if (G[x].size == 1) {
                if (areDiagonallySeparatedPartOfSquares(G[x].neis))
                    newPartOfAns = false;
            }
            else {
                int bg = find(x, 0);
                int en = find(x, G[x].size - 1);
                if (isEndOfPathBlocked(bg) && isEndOfPathBlocked(en) && G[x].threeInARowOverChild == 0)
                    newPartOfAns = false;
            }
        }
        else if (G[x].typ == CYCLE) {
            if (G[x].partOfSquare) newPartOfAns = false;
        }
        else if (G[x].typ == HIGH) {
            if (G[x].partOfSquare) newPartOfAns = false;
        }
        else assert(false);

        if (G[x].partOfAns == newPartOfAns)
            return;
        G[x].partOfAns = newPartOfAns;
        if (newPartOfAns) ANS += G[x].size;
        else ANS -= G[x].size;
    }
    void excludeFromAns(int x) {
        assert(x == root(x));
        if (G[x].partOfAns) {
            G[x].partOfAns = false;
            ANS -= G[x].size;
        }
    }
    vi rootifyList(vi v) {
        for (int &i : v) i = root(i);
        sort(all(v));
        v.erase(unique(all(v)), v.end());
        return v;
    }

    vi freeLista;
    map<pii, int> mapka;
	vector<Node> G;
	Treap(int n = 0) : G(n) {} // makes n disjoint nodes
	int make() {
        if (sz(freeLista)) {
            int i = freeLista.back();
            freeLista.pop_back();
            G[i] = Node{};
            return i;
        }
        G.pb({}); return sz(G)-1;
    }
    void addSquare(int px, int py) {

        auto neis = getTabliceNei({px, py});

        int x = make();

        // deb(px, py, x);
        G[x].xy = {px, py};
        mapka[G[x].xy] = x;
        neis[1][1] = x;

        vi nonzero = filterNodes(neis);
        // deb(neis, nonzero, x);
        for (int i : nonzero) {
            if (i != x) disconnect(i);
        }

        rep(i, 2) rep(j, 2) {
            int tu = 0;
            rep(a, 2) rep(b, 2)
                tu += neis[i+a][j+b] != -1;
            if (tu != 4) continue;

            rep(a, 2) rep(b, 2) {
                int id = neis[i+a][j+b];
                G[id].partOfSquare++;
            }
        }

        rep(i, 3) rep(j, 3) {
            int id = neis[i][j];
            if (id == -1) continue;
            if (dist(G[id].xy, G[x].xy) == 1) {
                G[id].neis.pb(x);
                G[x].neis.pb(id);
            }
        }

        // deb("\n przed reconnectami");
        // debTreap();
        // deb("\n");

        for (int i : nonzero) reconnect(i);
        for (int i : rootifyList(extlist(nonzero))) recheckPartOfAns(i);
    }
    void removeSquare(int x) {
        assert(G[x].isActiv);
        // deb(x);

        auto neis = getTabliceNei(G[x].xy);
        vi nonzero = filterNodes(neis);
        for (int i : nonzero) disconnect(i);

        rep(i, 2) rep(j, 2) {
            int tu = 0;
            rep(a, 2) rep(b, 2)
                tu += neis[i+a][j+b] != -1;
            if (tu != 4) continue;

            rep(a, 2) rep(b, 2) {
                int id = neis[i+a][j+b];
                G[id].partOfSquare--;
            }
        }

        rep(i, 3) rep(j, 3) {
            int id = neis[i][j];
            if (id == -1) continue;
            if (dist(G[id].xy, G[x].xy) == 1) {
                erase(G[id].neis, x);
            }
        }

        mapka.erase(G[x].xy);
        G[x].isActiv = false;
        freeLista.pb(x);

        erase(nonzero, x);
        for (int i : nonzero) reconnect(i);
        for (int i : rootifyList(extlist(nonzero))) recheckPartOfAns(i);
    }
    vi extlist(vi v) {
        int osz = sz(v);
        rep(i, osz) for (int j : G[v[i]].neis)
            v.pb(j);
        sort(all(v));
        v.erase(unique(all(v)), v.end());
        return v;
    }
    array<array<int, 3>, 3> getTabliceNei(pii xy) {
        auto [x, y] = xy;
        array<array<int, 3>, 3> r{};
        rep(i, 3) {
            rep(j, 3) r[i][j] = -1;
            auto it = mapka.lower_bound({x - 1 + i, y - 1});
            while (it != mapka.end() && it->first <= pii{x - 1 + i, y + 1}) {
                r[i][it->first.nd + 1 - y] = it->second;
                ++it;
            }
        }
        return r;
    }
    int getNodeAt(pii xy) {
        auto it = mapka.find(xy);
        if (it == end(mapka)) return -1;
        return it->second;
    }
    void flipSquare(int x, int y) {
        int id = getNodeAt({x, y});
        if (id == -1)
            addSquare(x, y);
        else
            removeSquare(id);

        #ifdef LOC
        // debTreap();
        // int corrANS = brute::solve(mapka);
        // if (corrANS != ANS) {
        //     deb(ANS, corrANS);
        //     exit(-1);
        // }
        #endif
    }
	int size(int x) { // subtree size of node x
		return (x >= 0 ? G[x].size : 0);
	}

	void push(int x) { // x can be -1 !!!
		if (x >= 0 && G[x].flip) {
			G[x].flip = 0;
			swap(G[x].E[0], G[x].E[1]);
			for(auto e : G[x].E) if (e>=0) G[e].flip ^= 1;
		} // + any other lazy operations
    }
	void update(int x) { // pull data up (reverse of push)
		if (x >= 0) {
			int& s = G[x].size = 1;
			G[x].par = -1;
            G[x].threeInARowOverChild = G[x].threeInARow;
			for (auto e : G[x].E) if (e >= 0) {
				s += G[e].size;
				G[e].par = x;
                G[x].threeInARowOverChild += G[e].threeInARowOverChild;
			}
		} // + any other aggregates
	}
	// Split treap x into treaps l and r
	// such that l contains first i elements
	// and r the remaining ones.
	// x, l, r can be -1; time: ~O(lg n)
	void split(int x, int& l, int& r, int i) {
		push(x); l = r = -1;
		if (x < 0) return;
		int key = size(G[x].E[0]);
		if (i <= key) {
			split(G[x].E[0], l, G[x].E[0], i);
			r = x;
		} else {
			split(G[x].E[1], G[x].E[1], r, i-key-1);
			l = x;
		}
		update(x);
	}
	// Join treaps l and r into one treap left to right
	// l, r and returned value can be -1.
	int join(int l, int r) { // time: ~O(lg n)
		push(l); push(r);
		if (l < 0 || r < 0) return max(l, r);
		if (G[l].weight < G[r].weight) {
			G[l].E[1] = join(G[l].E[1], r);
			update(l);
			return l;
		}
		G[r].E[0] = join(l, G[r].E[0]);
		update(r);
		return r;
	}
	// Find i-th node in treap x.
	// Returns its key or -1 if not found.
	// x can be -1; time: ~O(lg n)
	int find(int x, int i) {
		while (x >= 0) {
			push(x);
			int key = size(G[x].E[0]);
			if (key == i) return x;
			x = G[x].E[key < i];
			if (key < i) i -= key+1;
		}
		return -1;
	}
	// Get key of treap containing node x
	// (key of treap root). x can be -1.
	int root(int x) { // time: ~O(lg n)
		while (G[x].par >= 0) x = G[x].par;
		return x;
	}
	// Get position of node x in its treap.
	// x is assumed to NOT be -1; time: ~O(lg n)
	int index(int x) {
		int p, i = size(G[x].E[G[x].flip]);
		while ((p = G[x].par) >= 0) {
			if (G[p].E[1] == x) i+=size(G[p].E[0])+1;
			if (G[p].flip) i = G[p].size-i-1;
			x = p;
		}
		return i;
	}
	// Reverse interval [l;r) in treap x.
	// Returns new key of treap; time: ~O(lg n)
	int reverse(int x, int l, int r) {
		int a, b, c;
		split(x, b, c, r);
		split(b, a, b, l);
		if (b >= 0) G[b].flip ^= 1;
		return join(join(a, b), c);
    }
};

void solve() {
    Treap tr;
    int n, m, k, q;
    cin >> n >> m >> k >> q;
    rep(id, k + q) {
        int x, y;
        cin >> x >> y;
        tr.flipSquare(x, y);

        if (id >= k - 1)
            cout << tr.ANS << '\n';
    }
}

int32_t main() {
    cin.tie(0)->sync_with_stdio(0);
    cout << fixed << setprecision(10);

    // mt19937 rnd;
    // Treap tr;
    // rep(_, 150000)
    //     tr.flipSquare(rnd() % 15, rnd() % 15);

    int z = 1;
    // cin >> z;
    rep(_, z) solve();

    cout << flush;
    _Exit(0);
}