1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
#define NDEBUG
#include <cassert>
#include <iostream>
#include <map>
#include <set>
#include <sstream>
#include <string>
#include <vector>
#define FOR(i, a, b) for (int i = (a); i < (b); ++i)
#define F0R(i, a) FOR(i, 0, a)

#define cerr \
    if (false) cerr

#define dbg(x) " " << #x << " = " << x << " "
#define dbgv(x)                        \
    #x << " = [";                      \
    for (auto i : x) cerr << " " << i; \
    cerr << " ] "

#define cross_apply(x, y, f) \
    f(x, y);                 \
    f(x + 1, y);             \
    f(x - 1, y);             \
    f(x, y - 1);             \
    f(x, y + 1)
#define sum_vert(x, y, f) (f(x, y - 1) + f(x, y + 1))
#define sum_hor(x, y, f) (f(x - 1, y) + f(x + 1, y))
#define aggregate_square(x, y, f, op) (f(x, y) op f(x + 1, y) op f(x, y + 1) op f(x + 1, y + 1))
#define big_square_apply(x, y, f, L)              \
    for (int nx = x - L; nx <= x + L; nx++) {     \
        int W = L - abs(nx - x);                  \
        for (int ny = y - W; ny <= y + W; ny++) { \
            f(nx, ny);                            \
        }                                         \
    }

#define flip(m, x, y)      \
    if (m.count({x, y})) { \
        m.erase({x, y});   \
    } else {               \
        m.insert({x, y});  \
    }

#define print_state(layer)                               \
    cerr << #layer << endl;                              \
    for (int macro_y = m; macro_y > 0; macro_y--) {      \
        for (int macro_x = 1; macro_x <= n; macro_x++) { \
            cerr << busy_##layer(macro_x, macro_y);      \
        }                                                \
        cerr << endl;                                    \
    }                                                    \
    cerr << endl;

#define apply_updates(layer)                            \
    while (!awaiting_updates_##layer.empty()) {         \
        auto [x, y] = awaiting_updates_##layer.front(); \
        awaiting_updates_##layer.pop();                 \
        update_state_##layer(x, y);                     \
    }

#define in_board(x, y) (x >= 1 && x <= n && y >= 1 && y <= m)

using namespace std;

constexpr int MAXN = 200'005, INF = 2'000'000'000;

int n, m, k, q;

// Plansza po wykonaniu 0, 1, 2... zdjęć wszystkiego co się da zdjąć naraz w danej chwili.
set<pair<int, int>> layer_0, layer_1, layer_2;

int busy_layer_0(int x, int y) { return layer_0.count({x, y}); }

int busy_layer_1(int x, int y) { return layer_1.count({x, y}); }

int busy_layer_2(int x, int y) { return layer_2.count({x, y}); }

int full_square(int x, int y) { return aggregate_square(x, y, busy_layer_2, +) == 4; }

bool is_in_some_square(int x, int y) { return aggregate_square(x - 1, y - 1, full_square, ||); }

enum {
    NOTHING,
    NORMAL,
    BLOCKER,
};

typedef struct snode* LCT;
struct snode {           //////// VARIABLES
    LCT p, c[2];         // parent, children
    LCT extra;           // extra cycle node for "The Applicant"
    bool flip = 0;       // subtree flipped or not
    pair<int, int> val;  // value in node (diagonal, pos),
    int sz;              // # nodes in current splay tree
    int sub, vsub = 0;   // vsub stores sum of virtual children
    snode(pair<int, int> _val) : val(_val) {
        p = c[0] = c[1] = extra = NULL;
        calc();
    }
    friend int getSz(LCT x) { return x ? x->sz : 0; }
    friend int getSub(LCT x) { return x ? x->sub : 0; }
    void prop() {  // lazy prop
        if (!flip) return;
        swap(c[0], c[1]);
        flip = 0;
        F0R(i, 2) if (c[i]) c[i]->flip ^= 1;
    }
    void calc() {  // recalc vals
        F0R(i, 2) if (c[i]) c[i]->prop();
        sz = 1 + getSz(c[0]) + getSz(c[1]);
        sub = 1 + getSub(c[0]) + getSub(c[1]) + vsub;
    }
    //////// SPLAY TREE OPERATIONS
    int dir() {
        if (!p) return -2;
        F0R(i, 2) if (p->c[i] == this) return i;
        return -1;  // p is path-parent pointer
    }  // -> not in current splay tree
    // test if root of current splay tree
    bool isRoot() { return dir() < 0; }
    friend void setLink(LCT x, LCT y, int d) {
        if (y) y->p = x;
        if (d >= 0) x->c[d] = y;
    }
    void rot() {  // assume p and p->p propagated
        assert(!isRoot());
        int x = dir();
        LCT pa = p;
        setLink(pa->p, this, pa->dir());
        setLink(pa, c[x ^ 1], x);
        setLink(this, pa, x ^ 1);
        pa->calc();
    }
    void splay() {
        while (!isRoot() && !p->isRoot()) {
            p->p->prop(), p->prop(), prop();
            dir() == p->dir() ? p->rot() : rot();
            rot();
        }
        if (!isRoot()) p->prop(), prop(), rot();
        prop();
        calc();
    }
    LCT fbo(int b) {  // find by order
        prop();
        int z = getSz(c[0]);  // of splay tree
        if (b == z) {
            splay();
            return this;
        }
        return b < z ? c[0]->fbo(b) : c[1]->fbo(b - z - 1);
    }
    //////// BASE OPERATIONS
    void access() {  // bring this to top of tree, propagate
        for (LCT v = this, pre = NULL; v; v = v->p) {
            v->splay();  // now switch virtual children
            if (pre) v->vsub -= pre->sub;
            if (v->c[1]) v->vsub += v->c[1]->sub;
            v->c[1] = pre;
            v->calc();
            pre = v;
        }
        splay();
        assert(!c[1]);  // right subtree is empty
    }
    void makeRoot() {
        access();
        flip ^= 1;
        access();
        assert(!c[0] && !c[1]);
    }

    // # nodes above
    int distRoot() {
        access();
        return getSz(c[0]);
    }
    LCT getRoot() {  // get root of LCT component
        access();
        LCT a = this;
        while (a->c[0]) a = a->c[0], a->prop();
        a->access();
        return a;
    }
    LCT getPar(int b) {  // get b-th parent on path to root
        access();
        b = getSz(c[0]) - b;
        assert(b >= 0);
        return fbo(b);
    }  // can also get min, max on path to root, etc
    //////// MODIFICATIONS
    void set(pair<int, int> v) {
        access();
        val = v;
        calc();
    }
    friend void link(LCT parent, LCT child, bool force = 0) {
        if (force)
            child->makeRoot();  // make x par of y
        else {
            child->access();
            assert(!child->c[0]);
        }
        parent->access();
        setLink(child, parent, 0);
        child->calc();
    }
    friend void cut(LCT y) {  // cut y from its parent
        y->access();
        assert(y->c[0]);
        y->c[0]->p = NULL;
        y->c[0] = NULL;
        y->calc();
    }
    friend void cut(LCT x, LCT y) {  // if x, y adj in tree
        x->makeRoot();
        y->access();
        assert(y->c[0] == x && !x->c[0] && !x->c[1]);
        cut(y);
    }
};

// Parent in LCT has smaller position than child.
map<int, pair<LCT, LCT>> diag[4 * MAXN];

enum Layer3State {
    EMPTY,
    LEAF,
    DIAGONAL_A,
    DIAGONAL_B,
    DIAGONAL_C,
    DIAGONAL_D,
    IMMOVABLE,
};

Layer3State get_diagonal(int x, int y) {
    // In the middle
    if (busy_layer_2(x - 1, y) && busy_layer_2(x, y - 1)) return DIAGONAL_A;
    if (busy_layer_2(x + 1, y) && busy_layer_2(x, y + 1)) return DIAGONAL_B;
    if (busy_layer_2(x + 1, y) && busy_layer_2(x, y - 1)) return DIAGONAL_C;
    if (busy_layer_2(x - 1, y) && busy_layer_2(x, y + 1)) return DIAGONAL_D;

    return LEAF;
}

map<pair<int, int>, Layer3State> layer_3;
Layer3State get_layer_3_state(int x, int y) {
    auto it = layer_3.find({x, y});
    if (it == layer_3.end())
        return EMPTY;
    else
        return it->second;
}

Layer3State recalculate_layer_3_state(int x, int y) {
    if (!busy_layer_2(x, y)) return EMPTY;
    if (is_in_some_square(x, y)) return IMMOVABLE;
    return get_diagonal(x, y);
}

int leaves, from_diagonals;

// Returns {diagonal_id, pos_in_diagonal}.
pair<int, int> get_diagonal_info(Layer3State l, int x, int y) {
    if (l == DIAGONAL_A) return {x + (y - 1), 2 * (y - 1) + 1};
    if (l == DIAGONAL_B) return {x + y, 2 * y};
    if (l == DIAGONAL_C) return {n + m + (n - (x - (y - 1)) + 1), 2 * (y - 1) + 1};
    assert(l == DIAGONAL_D);
    return {n + m + (n - (x - y) + 1), 2 * y};
}

int is_blocker(int d, int pos) {
    auto it = diag[d].find(pos);
    assert(it != diag[d].end());
    return it->second.first != it->second.second;
}

string debug_node(LCT x) {
    stringstream s;
    int d = x->val.first;
    int pos = x->val.second;
    s << " LCT(" << d << "," << pos << "," << (is_blocker(d, pos) ? "BLOCKER" : "NORMAL") << ") ";
    return s.str();
}

int count_removable(LCT t) {
    LCT root = t->getRoot();
    int len = getSub(root);
    auto [d, pos_root] = root->val;
    int pos_leaf = pos_root + len - 1;

    int blockers = is_blocker(d, pos_root);

    if (pos_leaf != pos_root) blockers += is_blocker(d, pos_leaf);
    if (blockers == 2) return 0;
    return len - blockers;
}

void link_and_update(LCT parent, LCT child) {
    from_diagonals -= count_removable(parent);
    from_diagonals -= count_removable(child);

    link(parent, child);
    from_diagonals += count_removable(parent);
}

void cut_and_update(LCT parent, LCT child) {
    from_diagonals -= count_removable(parent);
    cut(child);
    from_diagonals += count_removable(parent);
    from_diagonals += count_removable(child);
}

void remove_blocker(int d, int pos) {
    assert(d >= 1 && d <= 2 * (n + m));
    assert(pos >= 1 && pos <= 2 * m);

    assert(diag[d].find(pos) != diag[d].end());
    assert(diag[d][pos].first != diag[d][pos].second);

    auto para = diag[d][pos];
    LCT left = para.first;
    LCT right = para.second;

    // Try to add edge pos -> pos + 1
    auto bigger_pos = diag[d].find(pos + 1);
    if (bigger_pos != diag[d].end()) {
        cut_and_update(right, bigger_pos->second.first);
    }

    // Try to add edge pos-1 -> pos
    auto smaller_pos = diag[d].find(pos - 1);
    if (smaller_pos != diag[d].end()) {
        cut_and_update(smaller_pos->second.second, left);
    }

    diag[d].erase(pos);
}

void insert_blocker(int d, int pos) {
    assert(d >= 1 && d <= 2 * (n + m));
    assert(pos >= 1 && pos <= 2 * m);

    assert(diag[d].find(pos) == diag[d].end());

    LCT left = new snode({d, pos});
    LCT right = new snode({d, pos});
    diag[d][pos] = {left, right};

    // Try to add edge pos -> pos + 1
    auto bigger_pos = diag[d].find(pos + 1);
    if (bigger_pos != diag[d].end()) {
        link_and_update(right, bigger_pos->second.first);
    }

    // Try to add edge pos-1 -> pos
    auto smaller_pos = diag[d].find(pos - 1);
    if (smaller_pos != diag[d].end()) {
        link_and_update(smaller_pos->second.second, left);
    }
}

void remove_normal(int d, int pos) {
    assert(d >= 1 && d <= 2 * (n + m));
    assert(pos >= 1 && pos <= 2 * m);

    assert(diag[d].find(pos) != diag[d].end());
    assert(diag[d][pos].first == diag[d][pos].second);

    LCT node = diag[d][pos].first;

    // Try to remove edge pos -> pos + 1
    auto bigger_pos = diag[d].find(pos + 1);
    if (bigger_pos != diag[d].end()) {
        cut_and_update(node, bigger_pos->second.first);
    }

    // Try to remove edge pos-1 -> pos
    auto smaller_pos = diag[d].find(pos - 1);
    if (smaller_pos != diag[d].end()) {
        cut_and_update(smaller_pos->second.second, node);
    }

    diag[d].erase(pos);
    from_diagonals--;
}

void insert_normal(int d, int pos) {
    assert(d >= 1 && d <= 2 * (n + m));
    assert(pos >= 1 && pos <= 2 * m);

    assert(diag[d].find(pos) == diag[d].end());

    from_diagonals++;
    LCT node = new snode({d, pos});
    diag[d][pos] = {node, node};

    // Try to add edge pos -> pos + 1
    auto bigger_pos = diag[d].find(pos + 1);
    if (bigger_pos != diag[d].end()) {
        link_and_update(node, bigger_pos->second.first);
    }

    // Try to add edge pos-1 -> pos
    auto smaller_pos = diag[d].find(pos - 1);
    if (smaller_pos != diag[d].end()) {
        link_and_update(smaller_pos->second.second, node);
    }
}

void update_state_layer_3(int x, int y) {
    Layer3State old_state = get_layer_3_state(x, y);
    Layer3State new_state = recalculate_layer_3_state(x, y);
    if (old_state != new_state) {
        // Undo what was in the structures before.
        if (old_state == LEAF)
            leaves--;
        else if (old_state == IMMOVABLE) {
            for (int diag_type = DIAGONAL_A; diag_type <= DIAGONAL_D; diag_type++) {
                auto [diag_id, diag_pos] = get_diagonal_info((Layer3State)diag_type, x, y);
                remove_blocker(diag_id, diag_pos);
            }
        } else if (old_state != EMPTY) {
            auto [diag_id, diag_pos] = get_diagonal_info(old_state, x, y);
            remove_normal(diag_id, diag_pos);
        }

        // And redo with new state.
        if (new_state == LEAF)
            leaves++;
        else if (new_state == IMMOVABLE) {
            for (int diag_type = DIAGONAL_A; diag_type <= DIAGONAL_D; diag_type++) {
                auto [diag_id, diag_pos] = get_diagonal_info((Layer3State)diag_type, x, y);
                insert_blocker(diag_id, diag_pos);
            }
        } else if (new_state != EMPTY) {
            auto [diag_id, diag_pos] = get_diagonal_info(new_state, x, y);
            insert_normal(diag_id, diag_pos);
        }

        layer_3[{x, y}] = new_state;
    }
}

constexpr int L = 3;
void update_state_layer_2(int x, int y) {
    int old_state = busy_layer_2(x, y);
    int new_state =
        busy_layer_1(x, y) && sum_hor(x, y, busy_layer_1) > 0 && sum_vert(x, y, busy_layer_1) > 0;
    if (old_state != new_state) {
        flip(layer_2, x, y);
    }
}

void update_state_layer_1(int x, int y) {
    if (!in_board(x, y)) return;

    int old_state = busy_layer_1(x, y);
    int new_state =
        busy_layer_0(x, y) && sum_hor(x, y, busy_layer_0) > 0 && sum_vert(x, y, busy_layer_0) > 0;
    if (old_state != new_state) {
        flip(layer_1, x, y);
    }
}

void flip_cell(int x, int y) {
    assert(in_board(x, y));
    // Update layer_0.
    flip(layer_0, x, y);

    // Update rest of layers in order.
    big_square_apply(x, y, update_state_layer_1, 1);
    big_square_apply(x, y, update_state_layer_2, 2);
    big_square_apply(x, y, update_state_layer_3, 3);
}

int ile() {
    int first_step = layer_0.size() - layer_1.size();
    int second_step = layer_1.size() - layer_2.size();

    return first_step + second_step + from_diagonals + leaves;
}

int32_t main() {
    ios_base::sync_with_stdio(0);
    cin.tie(0);
    cin >> n >> m >> k >> q;

    for (int i = 1; i <= k; i++) {
        int x, y;
        cin >> x >> y;
        flip_cell(x, y);
    }

    cout << ile() << "\n";
    for (int i = 1; i <= q; i++) {
        int x, y;
        cin >> x >> y;
        flip_cell(x, y);

        cout << ile() << "\n";
    }
}